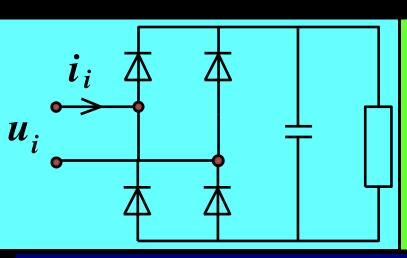
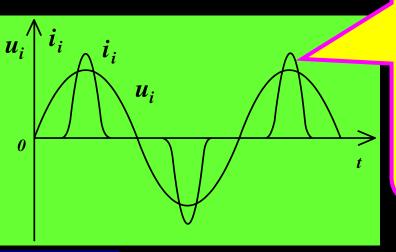
PFC电感计算

南京航空航天大学

周洁敏

jieminzh@nuaa.edu.cn

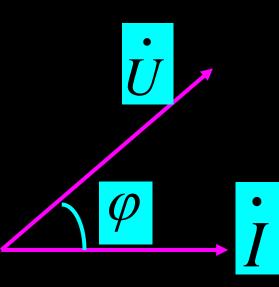

引言


PFC校正

功率因数校正即PFC是十几年电源技术进步的重大领域,它的基本原理是:

- (1) 电源输入电流实现正弦波,正弦化就是要使其谐波为零,电流失真因数THD=1。
- (2)保证电流相位与输入电压相位同相位,相移因数1。
 - (3) 最终实现PF=1的设计工作目标。

AC/DC整流电路中电流波形

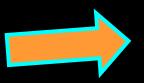


二管非性性 极的线特型

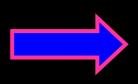
电路中功率因数定义:

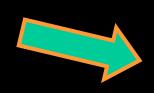
$$PF = \frac{P}{S} = \frac{有功功率}{视在功率}$$

$$PF = COS \varphi$$


08:56 PFC

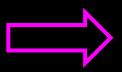
谐波电流对电网的危害

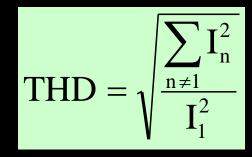

谐波的危害


(1)对电网产生谐波污染

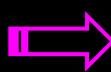
(2) 造成谐波压降

(3) 正弦电压波形畸变


(4)产生电路故障,变电设备损坏。


小知识

THD -Total Harmonic Distortion


名词术语与PFC校正任务

总谐波失真率

功率因数与 失真度的关系

$$PF = \sqrt{\frac{1}{1 + THD^2}}$$

功率因数 校正的任 务与目的

正弦化:电流失真 因数THD=1。

同相位: 电流与电压相位相同, PF=1。

PFC校正电路的选择

PFC校正电路有

buck
boost
Cuk
Flyback
SEPIC

一般以Boost 电路和反激式电路为讨论对象,前者常用于电流连续和临界连续工作方式,后者用于断续模式,由于时间关系只讨论Boost电路电感的计算与设计。

Boost PFC控制模式

连续模式(CCM)

Boost PFC控制模式

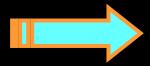
临界模式 (CRM, BCM)

断续模式 (DCM)

CCM(Continuous Current Mode)
BCM (Boundary Conduction Mode)
CRM(Critical Conduction Mode)
DCM (Discontinuous Current Mode)

Boost电路的PFC控制模式——CCM

CCM基本特征


(1) 峰值电流控制

常用的 控制 方法

- (2) 滯环电流控制
- (3) 平均电流控制

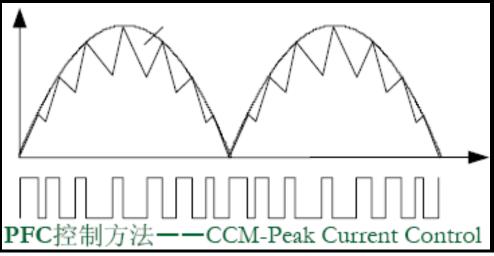
适用场合

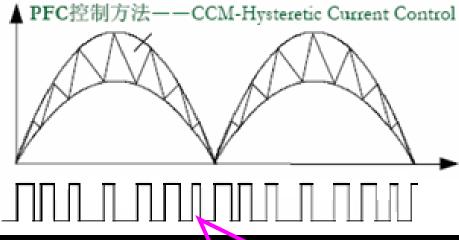
大功率场合

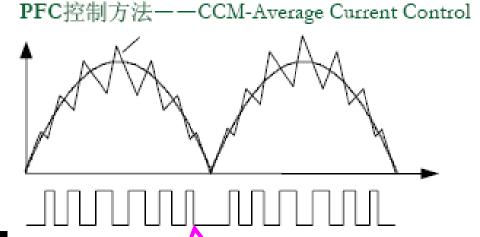
开关 频率

可恒定(平均电流控制)

F


可变化: 滯环电流控制


峰值电流控制

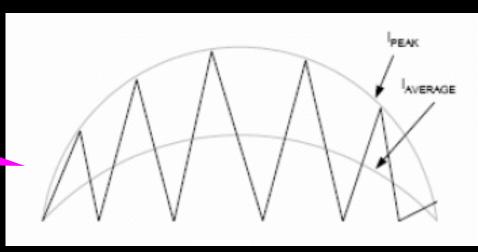

PFC的控制方法: CCM的控制方法

PFC

峰值电 流控制

滯环控制方法

08:56


平均电流控制

BOOST PFC控制模式——CRM

PFC

CRM (BCM) 特点

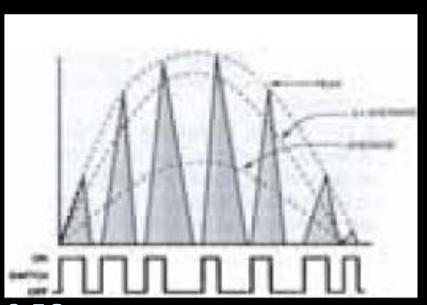
电感电感电流始 终处于CRM模式

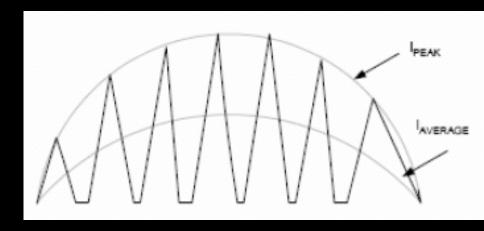
可获得单位功率因数1

适用中小功率场合

开关频率可变, 峰值处最低

导通时间固定


08:56


10

BOOST PFC控制模式——DCM

DCM特点

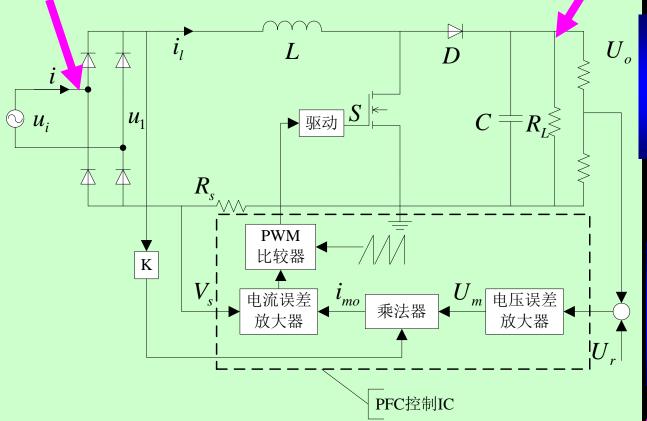
1、占空比近似不变时电感电流的峰值 时电感电流的峰值与输入电压成正比。

2、输入电流波形自然跟随输入电压波形

3、代价:功率管峰值电流大。

08:56 PFC 11

讨论的内容


一、连续模式的电感设计

二、临界连续模式电感设计

1、确定输出电压 CCM的电感设

 $U_0 = 390 \sim 410(V)$

 $(U_{in} \pm \Delta\%)$

输出电压一般是 输入最高峰值电 压的1.05~1.1倍。

输出电压高于输入最高电压的峰 值。

输入220V,50Hz,变化范 围是额定值的20%(Δ=20) 最高峰值电压

 $U_{p \max} = 220 \times 1.2 \times \sqrt{2} = 373.45(V)$

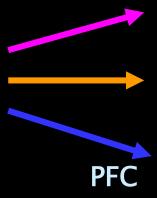
I 3

2、确定最大输入电流

CCM的电感设计

设计要点

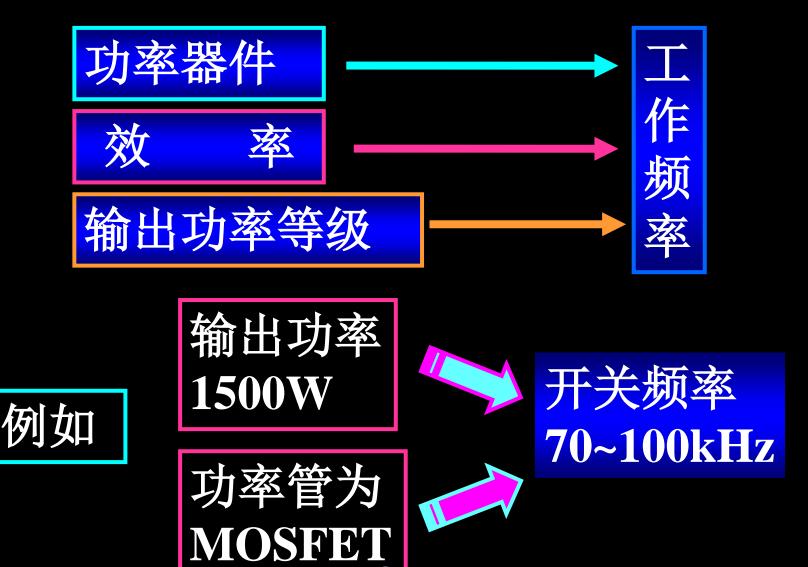
电感在最大电流时避免饱和


最大电流发生在输入电压 最低,输出功率最大时。

最大输入电流

$$I_{i\max} = \frac{P_o}{U_{i\min}\eta}$$

式中三个参数


$$U_{i \min} = U_{in} (100 - \Delta)\%$$

$$\eta \approx 95\%$$

$$P_o = U_o I_o$$

3、确定工作频率

CCM的电感设计

08:56

15

4. 确定最低输入电压峰值时的最大占空度

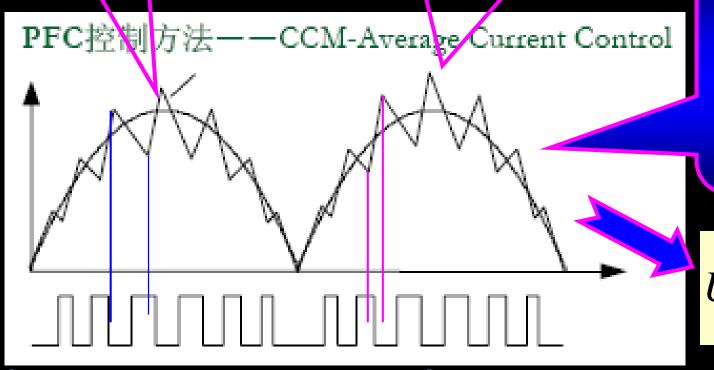
根据Boost 电路的公式

$$U_o = U_i / (1 - D)$$
 $D = U_i / U_0$
 $D = 1 - U_i / U_0$

最大占 空度

$$D_{p \max} = \frac{U_o - \sqrt{2}U_{imin}}{U_o}$$

输入电压最小峰值


输出电压U₀太低,在最高输入电压峰值时占空度非常小,由于功率开关的开关时间限制,可能输入电流不能跟踪输入电压,造成THD加大。

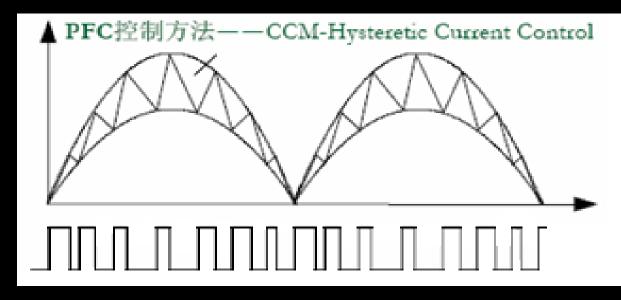
08:56 PFC 16

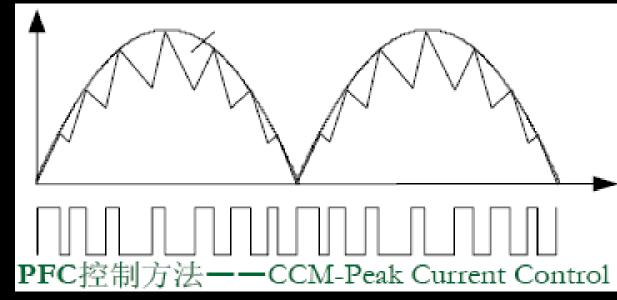
5、 求需要的电感量

CCM的电感设计

电感中 电流波形 一般情况下: 电感中的纹波电流等于峰值电流的20%。

跟踪的 是输入 电流平 均值

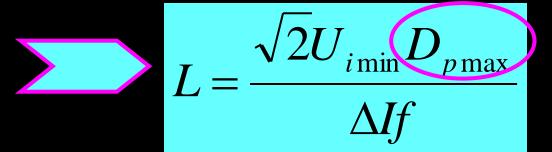

$$U_L = L \frac{\Delta I}{\Delta t}$$


5、求需要的电感量

CCM的电感设计

另外两种 控制方法 也类似。

$$U_L = L \frac{\Delta I}{\Delta t}$$


5、求需要的电感量

CCM的电感设计

$$D_{p \max} = \frac{T_{onp}}{T} = T_{onp} \bullet f$$

$$T_{onp} = \frac{D_{p \max}}{f}$$

$$L\frac{\Delta I}{T_{onp}} = \sqrt{2}U_{i\min}$$

定义电感纹波电流与峰值电流的比例系数

$$k = \frac{\Delta I/2}{I_{LP}}$$

即

$$\Delta I = 2k\sqrt{2}I_{i\max}$$

取

$$k = 0.1 \sim 0.15$$

19

6、利用AP法选择磁芯尺寸

CCM模式电感设计

求磁芯有效截面积Ae

$$\sqrt{2}U_{i\min}T_{on\max} = N\Delta\Phi = N\Delta BA_{e}$$

$$A_{e} = \frac{\sqrt{2}U_{i\min}T_{on\max}}{N\Delta B} = \frac{\sqrt{2}U_{i\min}D_{p\max}}{fN\Delta B}$$

其中

$$T_{on\max} = \frac{D_{p\max}}{f}$$

小知识

AP法选择磁芯:

$$AP = A_e \times A_w$$

(1)求磁芯有效截面积A_e

(2)求窗口面积A_w

查表选磁芯型号

08:56

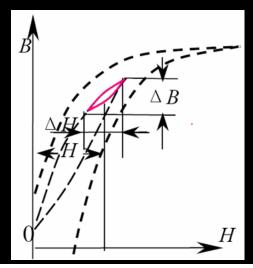
PFU

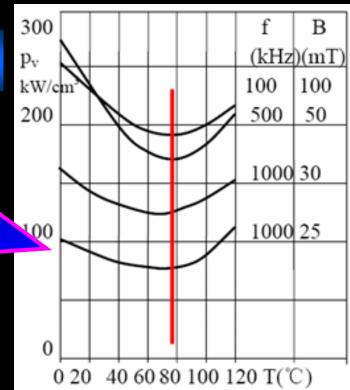
20

6、利用AP法选择磁芯尺寸

连续模式的电感设计

确定磁芯的工作情况前, 先研究Boost电感特点:

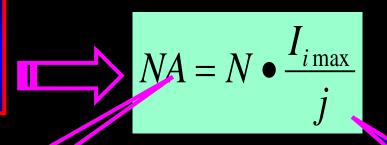

- (A) 直流分量很大
- (B) 磁芯损耗小于铜损耗
- (C) 最大输入电流不饱和

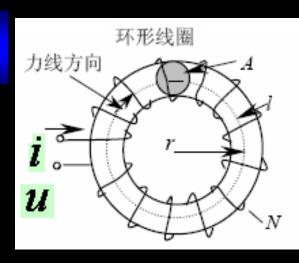

B的选择

$$B + \frac{\Delta B}{2} = B(1+k) < B_{s(100^{\circ} \pm \pm)}$$

$$\frac{\Delta B}{2} = kB$$

损 与 度 关





6、利用AP法选择磁芯尺寸 连续模式的电感设计

求窗口面积Aw

N匝导线 的面积

磁芯窗口面积Aw

$$A_{w} = \frac{I_{i \max} N}{jk_{w}}$$

电流密度

窗口 系数

6、利用AP法选择磁芯尺寸

连续模式的电感设计

$$A_{w} = \frac{I_{i \max} N}{j k_{w}}$$

$$A_{e} = \frac{\sqrt{2}U_{i\min}T_{on\max}}{N\Delta B} = \frac{\sqrt{2}U_{i\min}D_{p\max}}{fN\Delta B}$$

$$AP = A_w A_e = \frac{\sqrt{2}U_{i\min}D_{p\max}}{fN\Delta B} \cdot \frac{I_{i\max}N}{jk_w} = \frac{\sqrt{2}U_{i\min}I_{i\max}D_{p\max}}{2kk_w jfB}$$

保证任何情 况下磁芯不 饱和使用。

$$k = \frac{\Delta B}{2B}$$

< B/(1+k)

$$k_w = 0.3 \sim 0.5$$

PFC

7、计算匝数

$$N = \frac{L\Delta I}{\Delta B A_e}$$

上述就是以Boost电路PFC校正电路为例, 在连续电流模式情况下的PFC电感计算。

二、临界Boost电感设计

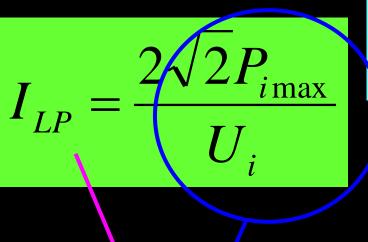
CRM电感设计方法一

以峰值控制法为例说明控制 概念.

CRM控制法

(1) 功率开关零电流导通电感电流线性上升。

(2) 当峰值电流达到跟踪的参考电流(正弦波)时开关关断,电感电流线性下降到零。


(3) 开关再次开通。

电感电流峰值波络

固定导通时间,变频控制

08:56 PFC 26

CRM电感设计方法一

$$\Delta i_{on} = \frac{T_{on} \bullet \sqrt{2} \bullet U_i}{L}$$

$$T_{on} = \frac{2 \bullet P_{i \max} \bullet L}{U_i^2}$$

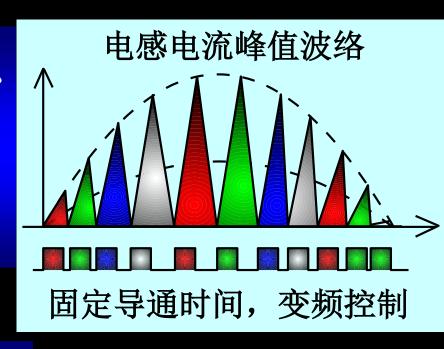
$$\Delta i_{off} = \frac{T_{off}(U_0 - \sqrt{2}U_i)}{L}$$

$$T_{off} = \frac{2\sqrt{2} \bullet P_{i \max} \bullet L}{U_i (U_0 - \sqrt{2}U_i \sin \omega t)}$$

$$f_s = \frac{1}{T_{on} + T_{off}} = \frac{P_{i \max} (U_0 - \sqrt{2} \bullet U_i \sin \omega t)}{2LU_0}$$

烦控制
$$L = \frac{U_i^2 \bullet (U_0 - \sqrt{2})}{2 f U_0}$$

电感电流峰值波络


固定导通时间,变频控制

08:56

为什么?

CRM电感设计方法一

对于给定输入电压和负载,开关频率也是要随着输入交流电压瞬时值的变化而变化的。

因此选择正弦交流输入的峰值点设计,开关频率最小,正弦值等于1,所以得到电感的表达式。

$$L = \frac{U_i^2 \bullet (U_0 - \sqrt{2}U_i)}{2f_{\min}U_0 P_{i\max}}$$

CRM电感设计方法二

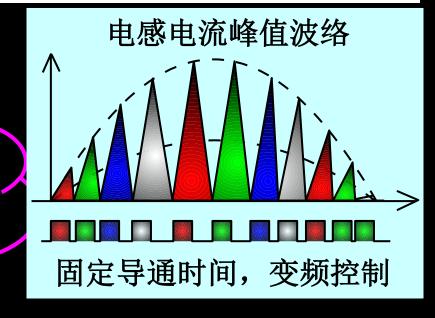
方法二的理论依据: 电感的导通伏秒应当等于截止时伏秒

$$U_i T_{on} = (U_o - U_i) T_{off}$$

$$T_{off} = \frac{U_i}{U_o - U_i} T_{on}$$

开关周期
$$T_s = T_{off} + T_{on} = \left(\frac{U_i}{U_o - U_i} + 1\right) T_{on} = \frac{U_o}{U_o - U_i} T_{on} = \frac{T_{on}}{1 - U_i/U_o}$$

应当注意:输出电压*U。*一定大于输入电压 *Ui*,如果输出电压接近输入电压,在输入电压峰值附近,截止时间远大于导通时间, 开关周期很长,即频率很低。


CRM电感设计方法二

符号定义

 T_{onh} :最高输入电压 U_{imax} 对应的导通时间

 T_{onL} :最低输入电压 U_{imin} 对应的导通时间

输入电压高,导 通时间短,输入 的电压低,导通 时间长

$$T_{onh} = T_{onL} \left(rac{U_{i\min}}{U_{i\max}}
ight)^{2}$$

08:56

30

CRM电感设计方法二

最大输入 电流有效值

$$I_{i\max} = \frac{P_o}{U_{i\min}\eta}$$

电感中最大 峰值电流

$$I_{p \max} = 2\sqrt{2}I_{i \max} = \frac{2\sqrt{2}P_o}{U_{i \min}\eta}$$

决定电感量

CRM电感设计方法二

电感选择原则

(1) 开关频率应在20kHz以上,避免噪音。

(2) 最高输入电压峰值时,开关频率最低。 假定最高输入电压峰值的开关周期为50µs。

$$T_{onh} = T\left(1 - \sqrt{2}U_{i \max} / U_{o}\right)$$

$$T_{onL} = T_{onh}\left(U_{i \max} / U_{i \min}\right)^{2} \longleftrightarrow L = \frac{U_{i}T_{onL}}{I_{i}}$$

$$08:56$$
PFC

磁芯的选择

选择磁芯

CRM电感设计方法

磁芯选择原则应考虑最 恶劣情况下磁芯不饱和

最低电压输入峰值不饱和。

最大

$$\sqrt{2}U_{i\min}T_{onL} = NA_{e}B_{m}$$

最大磁通密度

 $B_m < B_{S(100^{\circ}C)}$

为减少损耗,应选择饱和磁感应的70%。

选择磁芯

CRM电感设计

窗口系数

单根导线面积

整个窗口铜线的截面积

$$A_{w}k_{w} = \frac{I_{i\max}}{j}N$$

$$N = \frac{A_{w}k_{w}j}{I_{i\max}}$$

$$A_e = \frac{\sqrt{2}U_{i\min}T_{onL}}{NB_m}$$

$$A_{w} = \frac{NI_{i\max}}{k_{w}j}$$

电感线 圈圈数

$$AP = A_e A_w = \frac{\sqrt{2}U_{i\min}I_{i\max}T_{onL}}{B_m jk_w} = \frac{\sqrt{2}P_o T_{onL}}{Bjk_w}$$

计算线圈匝数

CRM电感设计

$$N = \frac{2\sqrt{2}LI_{i\max}}{B_{m}A_{e}}$$

线圈导线截面积

$$A_{cu} = \frac{I_{i \max}}{j}$$

PFC的电感计算方法总结

- (1) 弄清所选择的控制方法
- 一般来讲连续模式有:峰值电流控制、平均电流控制和滞环控制等方法。此外还有电感电流临界模式和断续模式,可以参考相关书籍。
- (2)弄清输入参数和输出参数对电感设计的影响,寻找最恶劣条件的情况下,如果电感参数满足设计要求,那么在任何工作范围内电感设计满足要求。
- (3) 计算电感时应密切关注电感上的电流变化, 电感上电压的变化及其变化的时间即伏秒面积。并 遵循能量守恒下电感电流不能突变的原则分析。

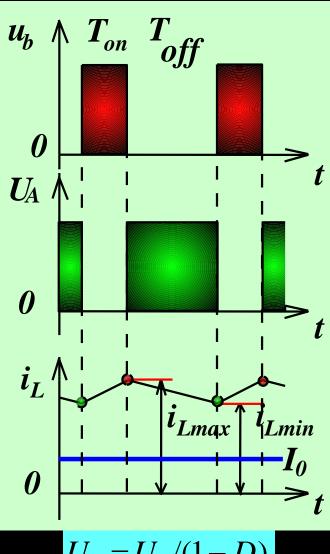
PFC的电感计算方法总结

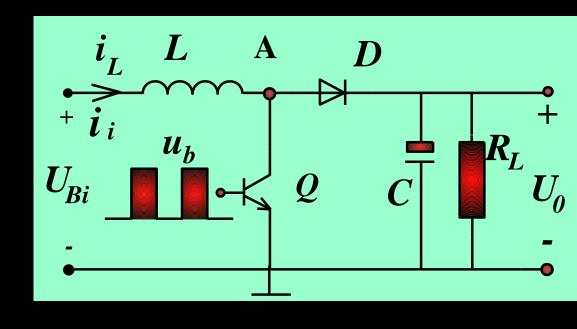
(4) 磁性材料设计时应注意磁芯磁场的工作范围,确保在整个工作时间内磁感应密度不饱和。并在考虑磁芯损耗、工作频率和工作温度等条件下选择 \mathbf{B}_{S} 。

(5) 利用AP法计算,选择磁芯 计算磁芯的有效磁芯面积和磁芯窗口面 积,再查表选择磁芯。初步设计后并核算窗 口利用系数。

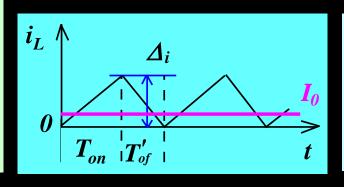
PFC电感设计

附录

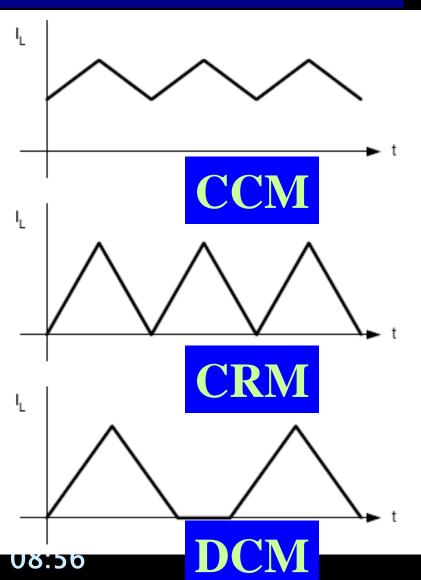

附录1 常规Boost电路工作的三种模式

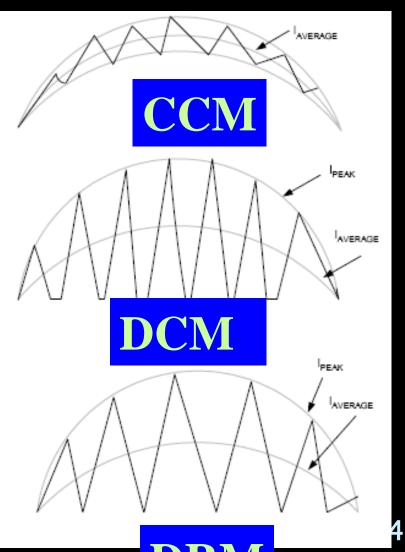

附录2 直流输入与交流输入模式比较

附录3 例子说明 CRM电感设计


附录4 例题 CRM电感设计

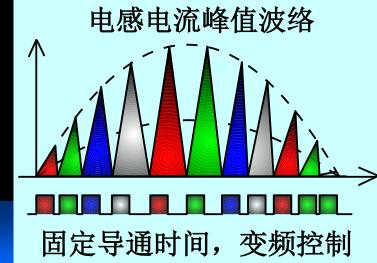
常规Boost电路工作的三种模


 i_L


08:56

附录2:直流输入与交流输入模式比较

三种电感电流模式


PFC电感电流形状

PFC

附录3 例子说明

CRM电感设计方法二

假定导通时间为: $T_{on}=10\mu s$;

输入电压最小峰值: $1.414U_{imin}/U_o=0.65$;

根据 $U_o = U/(1-D)$ 得D=0.35

周期为:T=Ton/D=10/0.35=28.57μs,

频率f=1/28.57µs=35kHz。

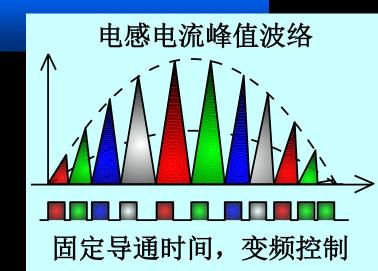
如果输入电压在±20%范围变化;

最低输入电压为220×0.8=176V;

输出电压: U_o=1.414×220×0.8/0.65=383V。

附录3 例子说明

CRM电感设计方法二


在15°时,周期为12μs,相当于开关频率为83kHz

在最高输入电压时,得到最高电压导通时间 $T_{onh} = (0.8/1.2)2 \times TonL = 4.444 \mu s$,

在峰值时的开关周期为

 $T = Tonh/(1-1.414 \times 1.2 \times 220/383) = 176 \mu s$

相当于开关频率为5.66kHz。

08:56 PFC

附录3 例子说明 CRM电感设计方法二

如果将输出电压提高到410V

- (1)最低输入电压时开关周期为25.45μs, 开关频率 为39.3kHz。
- (2)15°时为11.864µs,开关周期为84.5kHz。
- (3)输入最高电压峰值时,周期为49.2μs,开关频率为20.3kHz。
- (4)频率变化范围大为减少。即使在输入电压过零处,截止时间趋近零,开关频率约为100kHz。最高频率约为最低频率只有5倍。而在383V输出电压时,却为18倍。

08:56 PFC 4

附录3 小结

CRM电感设计方法二

- (1)提高输出电压,开关频率变化范围小,有利于输出滤波。
- (2) 功率管和整流二极管要更高的电压定额,导通损耗和开关损耗增加。
- (3) 220V±20%交流输入,一般选择 输出电压为410V左右。
- (4) 110V±20%交流输入,输出电压 选择210V。

CRM电感设计

例:输入220V±20%,输出功率200W, 采用临界连续(CRM),假定效率为0.95。

解: 输入最大电流为

$$I_{i \max} = \frac{P_o}{\eta U_{i \min}} = \frac{200}{0.95 \times 0.8 \times 220} = 1.2$$

峰值电流

$$I_p = 2\sqrt{2}I_{i\max} = 3.38A$$

设输出电压为410V,最高输入电压时最低频率 为20kHz。即周期为50μs,因此,导通时间为

$$T_{onh} = T(1 - \sqrt{2}U_{i \max}/U_o) = 50(1 - \sqrt{2} \times 1.2 \times 220/410) = 4.47 \,\mu s$$

输入最低电压峰值时的导通时间

$$T_{onL} = T_{onh} \left(\frac{U_{i \text{ max}}}{U_{i \text{ min}}} \right)^2 = 4.47 \times \left(\frac{264}{176} \right)^2 = 10.1 \mu s$$

CRM电感设计

开关周期为

$$T = \frac{T_{on}}{1 - U_i/U_o} = \frac{10.1}{1 - \sqrt{2} \times 0.8 \times 220/410} = 25.7 \,\mu\text{s}$$

需要的电感量

$$L = \frac{U_i T_{onL}}{I_i} = \frac{176}{1.2} \times 10.1 \times 10^{-6} = 1.48 \text{mH}$$

附录4

例题

CRM电感设计

如果采用磁粉芯,选用铁硅铝磁芯。

$$LI^2 = 1.48 \times 3.382 \times 10^{-3} = 16.9 mJ$$

电感系数 $A_L = 135nH$ 电感 1.48mH

选择77439,有效磁导率为60.

需要的匝数为

$$N = \sqrt{\frac{1480}{0.135}} = 104.7$$

$$N=105$$
 匝

附录4 例题

CRM电感设计

77439的平均磁路长度l=10.74cm, 磁场

强度为
$$H = \frac{0.4\pi NI}{l} = \frac{0.4\pi \times 105 \times 1.2 \times 1.414}{10.74} = 21O_e$$

磁导率为60, H=21Oe, 当磁导率下降到90%时, 为了在给定峰值电流时 保持给定电感量,需增加匝数为:

$$N = 105 \times \sqrt{\frac{1}{0.9}} = 110.6$$
 $M = 111$

$$N=111$$
匝

CRM电感设计

此时磁场强度H=111×21/105=22.2Oe, μ下降到0.88,此时电感量:

$$L = N^2 A_L = 0.135 \times 0.88 \times 111^2 = 1464 \,\mu H = 1.464 \,mH$$

满足设计要求。最高电压时开关频率提高大约1%。 应当注意到这里使用的是平均电流,实际峰值电流 大一倍,最大磁场强度大一倍,从图上得到磁导率 下降到80%,磁场强度从零到最大,平均磁导率为 (0.8+1)/2=0.9,接近0.88。

08:56 PFC 52

CRM电感设计

选取电流密度j=5A/mm2,导线尺寸为:

$$d = 1.13\sqrt{\frac{I}{j}} = 1.13\sqrt{\frac{1.2}{4}} = 0.619mm$$

选择:
$$d = 0.63mm$$
 $d' = 0.70mm$ $A_{cu} = 0.312mm^2$

$$d' = 0.70mm$$

$$A_{cu} = 0.312 \, mm^2$$

核算窗口利用系数:

$$A_{\rm W}=4.27\,cm^2$$

$$\text{III:} \quad k_{w} = \frac{N \times A_{cu}}{A_{w}} = \frac{111 \times 0.312 \times 10^{-2}}{4.27} = 0.08$$

08:56

CRM电感设计

内径 OD = 47.6mm

考虑第一层
$$N_{m1} = \frac{\pi(ID - 0.5d' - 0.05)}{1.5d'} - 1 = 96.9$$

实际96匝

第二层只要15匝。

