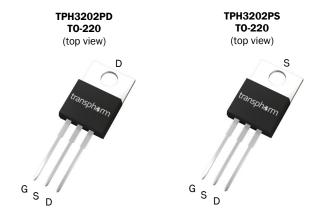


600V Cascode GaN FET TO-220 Series

Description

The TPH3202P Series 600V, $290m\Omega$ gallium nitride (GaN) FETs are normally-off devices. Transphorm GaN FETs offer better efficiency through lower gate charge, faster switching speeds, and smaller reverse recovery charge, delivering significant advantages over traditional silicon (Si) devices.


Transphorm is a leading-edge wide band gap supplier with world-class innovation and a portfolio of fully-qualified GaN transistors that enables increased performance and reduced overall system size and cost.

Related Literature

- ANOOO3: Printed Circuit Board Layout and Probing
- ANOOO2: Characteristics of GaN Power Switches

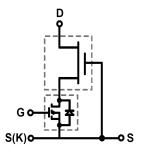
Product Series and Ordering Information

Part Number	Package	Package Configuration
TPH3202PD	3 Lead TO-220	Common Drain
TPH3202PS	3 Lead TO-220	Common Source

Features

- Easy to drive—compatible with standard gate drivers
- Low conduction and switching losses
- Low Qrr of 29nC—no free-wheeling diode required
- GSD pin layout improves high speed design
- JEDEC-qualified GaN technology
- · RoHS compliant and Halogen-free

Benefits


- · Increased efficiency through fast switching
- Increased power density
- · Reduced system size and weight
- Enables more efficient topologies—easy to implement bridgeless totem-pole designs
- Lower BOM cost

Applications

- · Renewable energy
- Industrial
- Automotive
- · Telecom and datacom
- Servo motors

Key Specifications			
V _{DS} (V) min	600		
V _{TDS} (V) max	750		
$R_{DS(on)}(m\Omega)\;max^*$	350		
Q _{rr} (nC) typ	29		
Qg (nC) typ	6.2		

^{*} Includes dynamic R_(on)

Cascode Device Structure

Absolute Maximum Ratings (T_C=25 °C unless otherwise stated)

Symbol	Param	eter	Limit Value	Unit
I _{D25°C}	Continuous drain current @To	=25°C	9	А
I _{D100°C}	Continuous drain current @To	=100°C	6	А
I _{DM}	Pulsed drain current (pulse w	idth: 100µs)	35	А
V _{DSS}	Drain to source voltage		600	V
V _{TDS}	Transient drain to source volt	Transient drain to source voltage a		V
V_{GSS}	Gate to source voltage	Gate to source voltage		V
P _{D25°C}	Maximum power dissipation	Maximum power dissipation		W
Tc	Operating tomporature	Case	-55 to +150	°C
TJ	Operating temperature	Junction	-55 to +175	°C
Ts	Storage temperature	Storage temperature		°C
T _{CSOLD}	Soldering peak temperature b	Soldering peak temperature b		°C

Thermal Resistance

Symbol	Parameter	Typical	Unit
R _{OJC}	Junction-to-case	2.3	°C/W
R _{OJA}	Junction-to-ambient	62	°C/W

Notes:

a. In off-state, spike duty cycle D<0.1, spike duration <1 μ s

b. For 10 sec., 1.6mm from the case

Electrical Characteristics (T_C=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Static			•		•		
V _{DSS-MAX}	Maximum drain-source voltage	600	_	_	V	V _{GS} =0V	
$V_{\text{GS(th)}}$	Gate threshold voltage	1.6	2	2.5	V	V _{DS} =V _{GS} , I _D =250μA	
Ъ	Drain-source on-resistance (T _J =25°C)	_	290	350	mO	V _{GS} =8V, I _D =5.5A, T _J =25°C	
$R_{DS(on)}$	Drain-source on-resistance (T _J =175°C)	_	670	_	· mΩ	V _{GS} =8V, I _D =5.5A, T _J =175°C	
lana	Drain-to-source leakage current (T _J =25°C)	_	2.5	90		V _{DS} =600V, V _{GS} =0V, T _J =25°C	
I _{DSS}	Drain-to-source leakage current (T _J =150°C)	_	8	_	μΑ	V _{DS} =600V, V _{GS} =0V, T _J =150°C	
lana	Drain-to-source forward leakage current	_	_	100	nA	V _{GS} =18V	
I_{GSS}	Drain-to-source reverse leakage current	_	_	-100	IIA	V _{GS} =-18V	
Dynamic							
Ciss	Input capacitance	_	760	_			
Coss	Output capacitance	_	26	_	pF	V _{GS} =0V, V _{DS} =480V, <i>f</i> =1MHz	
C _{RSS}	Reverse transfer capacitance	_	3.5	_			
C _{O(er)}	Output capacitance, energy related ^a	_	36	_	, r	V _{GS} =0V, V _{DS} =0V to 480V	
C _{O(tr)}	Output capacitance, time related ^a	_	57	_	- pF		
Qg	Total gate charge b	_	6.2	9.3		V _{DS} =100V a, V _{GS} =0V to 4.5V, I _D =5.5A	
Qgs	Gate-source charge	_	2.1	_	nC		
Q _{gd}	Gate-drain charge	_	2.2	_		10 0.071	
t _{d(on)}	Turn-on delay	_	6.2	_			
t _r	Rise time	_	4.5	_	no	V _{DS} =400V, V _{GS} =0V to 10V,	
T _{d(off)}	Turn-off delay	_	9.7	_	ns	$I_D=5.5A$, $R_G=2\Omega$	
t _f	Fall time	_	5	_			
Reverse	Operation					ı	
Is	Reverse current	_	_	8.9	А	V _{GS} =0V, T _C =100°C	
		_	2.11	_		V _{GS} =0V, I _S =5.5A, T _J =25°C	
V _{SD}	Reverse voltage	_	3.1	_	V	V _{GS} =0V, I _S =5.5A, T _J =175°C	
		_	1.48	_		V _{GS} =0V, I _S =3A, T _J =25 °C	
t _{rr}	Reverse recovery time	_	11.5	_	ns	I _S =5.5A, V _{DD} =480V,	
Qrr	Reverse recovery charge	_	29	_	nC	di/dt=1500A/μs, T _J =25°C	

Fixed while V_{DS} is rising from 0 to 80% V_{DSS}

 Q_g does not change for $V_{DS} > 100V$

Typical Characteristics (25 °C unless otherwise stated)

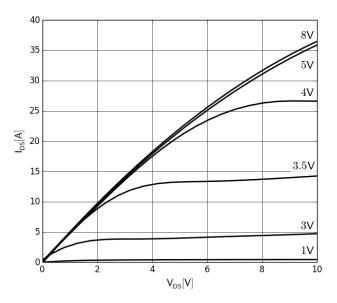


Figure 1. Typical Output Characteristics T_J=25°C Parameter: V_{GS}

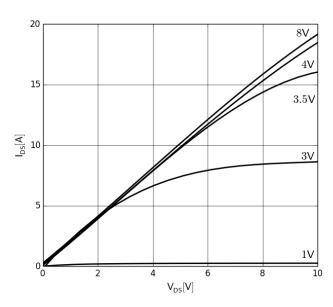


Figure 2. Typical Output Characteristics T_J=175°C Parameter: V_{GS}

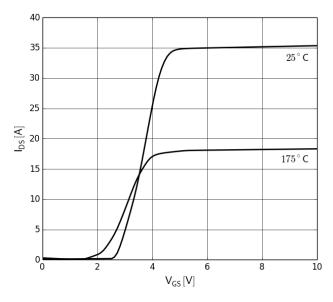


Figure 3. Typical Transfer Characteristics V_{DS}=10V, parameter: T_J

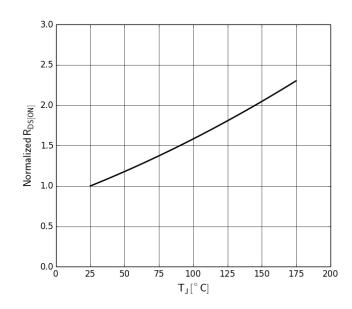


Figure 4. Normalized On-Resistance I_D=6A, V_{GS}=8V

Typical Characteristics (25 °C unless otherwise stated)

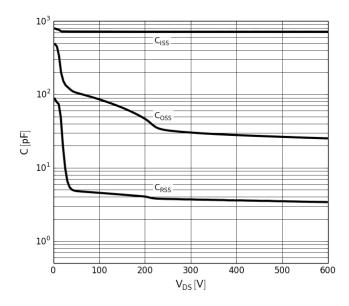


Figure 5. Typical Capacitance V_{GS} =0V, f=1MHz

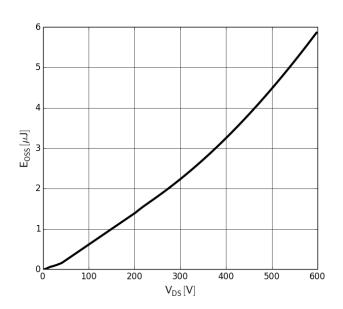


Figure 6. Typical Coss Stored Energy

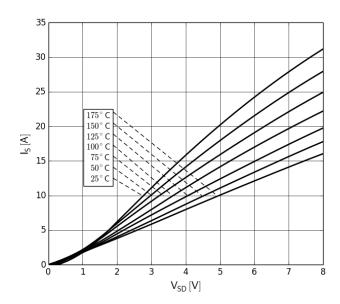


Figure 7. Forward Characteristics of Rev. Diode $I_S {=} f(V_{SD}), \ parameter {:}\ T_J$

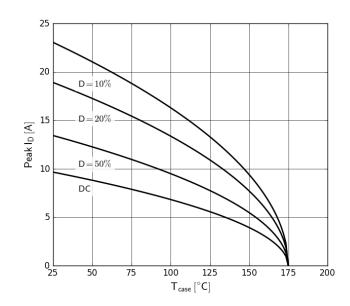


Figure 8. Current Derating
Pulse width $\leq 100 \mu s$

Typical Characteristics (25 °C unless otherwise stated)

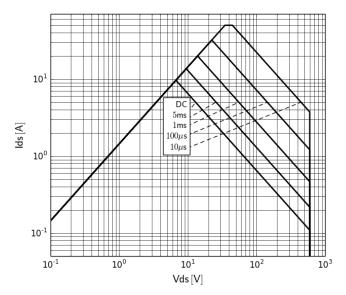


Figure 9. Safe Operating Area Tc=25°C

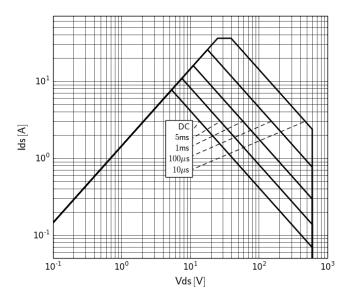


Figure 10. Safe Operating Area T_C=80°C

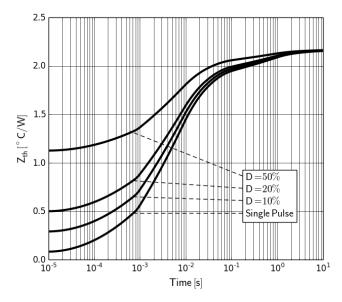


Figure 11. Transient Thermal Resistance

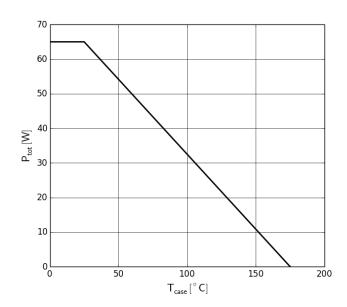


Figure 12. Power Dissipation

Test Circuits and Waveforms

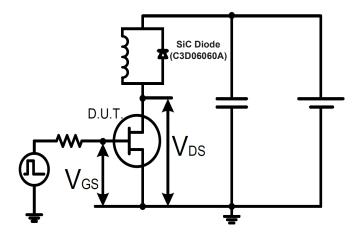


Figure 13. Switching Time Test Circuit

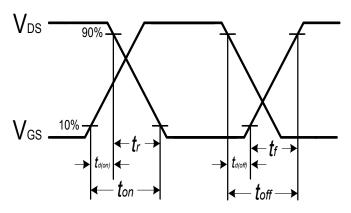


Figure 14. Switching Time Waveform

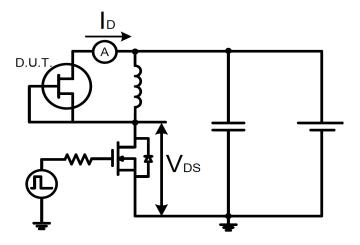
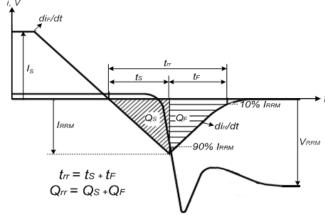
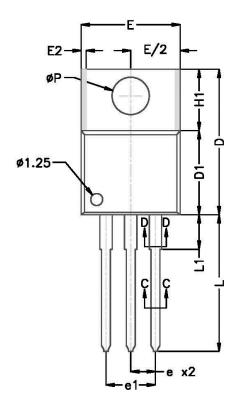
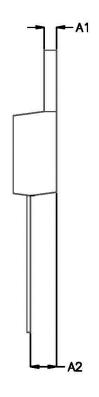


Figure 15. Test Circuit for Reverse Diode Characteristics




Figure 16. Diode Recovery Waveform


Mechanical

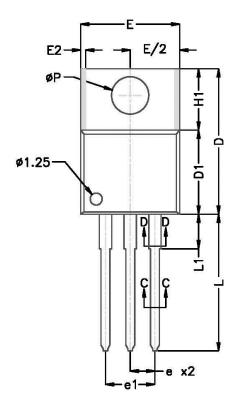
3 Lead TO-220 (PD) Package

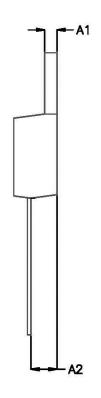
Pin 1: Gate; Pin 2: Source; Pin 3: Drain, Tab: Drain

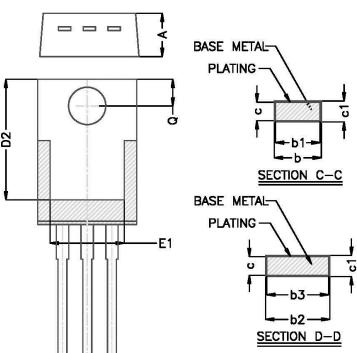
MILLIMETERS

	BASE METAL— PLATING—
	SECTION C-C
E	BASE METAL- PLATING -

maina)	(BO) MILLIMETERS		INCHES			
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	MINIMUM	NOMINAL	MAXIMUM
Α	3.56	4.45	4.83	0.140	0.175	0.190
A1	0.51	1.27	1.40	0.020	0.050	0.055
A2	2.03	-	2.92	0.080	=	0.115
ь	0.38	-	1.01	0.015	_	0.040
b1	0.38	-	0.97	0.015	-	0.038
b2	1.14	-	1.78	0.045	-	0.070
b3	1.14	1.27	1.73	0.045	0.050	0.068
E	0.36	-	0.61	0.014	-	0.024
c1	0.36	0.38	0.58	0.014	0.015	0.022
D	14.22		16.51	0.560	-	0.650
D1	8.38	8.64	9.02	0.330	0.340	0.355
D2	11.68	-	12.88	0.460	-	0.507
E	9.65	10.19	10.67	0.380	0.401	0.420
E1	6.86	-	8.89	0.270	ı	0.350
E2	-	-	0.76	100	-	0.030
		2.54 BSC		Ū	0.100 BSC	3
e1		5.06 BSC		·	0.200 BS0	3
H1	5.84	6.30	6.88	0.230	0.248	0.270
L	12.70	14.05	14.73	0.500	0.553	0.580
L1	-	~	6.35	•		0.250
ø₽	3.54	3.84	4.08	0.139	0.151	0.161
Q	2.54	-	3.42	0.100	-	0.135


NOTES:


- 1. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 MM (0.005") PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
- 2. DIMENSIONS E2 & H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- 3. OUTLINE CONFORMS TO JEDEC TO-220AB.


Mechanical

3 Lead TO-220 (PS) Package

Pin 1: Gate; Pin 2: Source; Pin 3: Drain, Tab: Source

SYMBOL	MILLIMETERS		INCHES			
STMBUL	MINIMUM	NOMINAL	MAXIMUM	MINIMUM	NOMINAL	MAXIMUM
A	3.56	4.45	4.83	0.140	0.175	0.190
A1	0.51	1.27	1.40	0.020	0.050	0.055
A2	2.03	H	2.92	0.080	93 10	0.115
ь	0.38	-	1.01	0.015	_	0.040
b1	0.38	H	0.97	0.015	2000 2000	0.038
b2	1.14	-	1.78	0.045	-	0.070
b3	1.14	1.27	1.73	0.045	0.050	0.068
C	0.36	-	0.61	0.014	_	0.024
c1	0.38	0.38	0.58	0.014	0.015	0.022
D	14.22		16.51	0.560	-	0.650
D1	8.38	8.64	9.02	0.330	0.340	0.355
D2	11.68	-	12.88	0.460	•	0.507
E	9.65	10.19	10.67	0.380	0.401	0.420
E1	6.86	2 — 1	8.89	0.270	•	0.350
E2	-	-	0.76	100	-	0.030
		2.54 BSC		Ū	0.100 BSC	;
e1		5.08 BSC		·	0.200 BS0	3
H1	5.84	6.30	6.88	0.230	0.248	0.270
Le	12.70	14.05	14.73	0.500	0.553	0.580
L1	7-2	7-2	6.35	-	-	0.250
ø₽	3.54	3.84	4.08	0.139	0.151	0.161
0	2.54	-	3.42	0.100	-	0.135

NOTES:

- 1. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 MM (0.005") PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
- 2. DIMENSIONS E2 & H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- 3. OUTLINE CONFORMS TO JEDEC TO-220AB.

Design Considerations

The fast switching of GaN devices reduces current-voltage cross-over losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See ANOOO3: Printed Circuit Board Layout and Probing	

Application Notes

- ANOOO2: Characteristics of Transphorm GaN Power Switches
- ANOOO3: Printed Circuit Board Layout and Probing
- ANOOO4: Designing Hard-switched Bridges with GaN
- ANOOO8: Drain Voltage and Avalanche Ratings for GaN FETs

Evaluation Boards

- TDPS251E0D2-KIT: 250W LLC evaluation platform
- TDPS250E2D2-KIT: 250W all-in-one power supply evaluation platform

Revision History

Version	Date	Change(s)	
0	11/14/2016	delease P series datasheet	