transphorm

TP90H050WS (Preliminary)

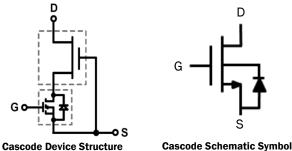
900V Cascode GaN FET in TO-247 (source tab)

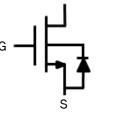
Description

The TP90H050WS, 900V, 50m Ω gallium nitride (GaN) FETs is a normally-off device, combining a low voltage silicon MOSFET with industry-leading threshold voltage for increased robustness and noise immunity, and the market's most reliable depletion mode GaN FET.

Transphorm GaN offers better efficiency over silicon, through lower gate charge, lower cross-over losses, and smaller reverse recovery charge.

Related Literature


- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing


Ordering Information

Part Number	Package	Package Configuration
TP90H050WS	3 Lead TO-247	Common Source

TP90H050WS

July 6, 2017 Tp90h050ws.0

Transphorm China +86-13501775977 HZ021@QQ.COM

Features

- JEDEC-gualified GaN technology
- Robust design, defined by - Lifetime intrinsic testing
 - Wide gate safety margin
 - Lower Qrr over silicon
- Reduced crossover loss
- Compatible with commonly-used gate drivers
- RoHS compliant and Halogen-free packaging

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs— Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- · Achieves increased efficiency in both hard- and softswitched topologies
- · Easy to drive

Applications

- · Renewable energy
- Industrial
- Telecom and datacom
- Servo motors

Key Specifications

V _{DS} (V) min	900			
V _{TDS} (V) max	1000			
$R_{DS(on)}(m\Omega)$ max*	60			
Q _{rr} (nC) typ	150			
Qg (nC) typ	16			

* Dynamic R(on)

Absolute Maximum Ratings (Tc=25°C unless otherwise stated)

Symbol	Param	eter	Limit Value	Unit
I _{D25°C}	Continuous drain current @Tc	=25°Cª	34	А
ID100°C	Continuous drain current @Tc	=100°C ª	22	A
I _{DM}	Pulsed drain current (pulse w	idth: 10µs)	150	A
V _{DSS}	Drain to source voltage		900	V
V _{TDS}	Transient drain to source volt	Transient drain to source voltage ^b		V
V _{GSS}	Gate to source voltage		±20	V
P _{D25°C}	Maximum power dissipation		119	W
Tc	Operating temperature	Case	-55 to +150	°C
ΤJ		Junction	-55 to +150	°C
Ts	Storage temperature		-55 to +150	°C
T _{CSOLD}	Soldering peak temperature °		260	°C

Thermal Resistance

Symbol	Parameter	Typical	Unit
R _{0JC}	Junction-to-case	1.05	°C/W
R _{0JA}	Junction-to-ambient	40	°C/W


Notes:

a. For high current operation, see application note AN0009

b. In off-state, spike duty cycle D<0.01, spike duration <1 μ s

c. For 10 sec., 1.6mm from the case

Circuit Configuration^a

a. Recommended gate drive: (8V to 12V, 0V), R_{G} = 10 Ω

Sustained oscillation can occur in switching applications using high speed GaN devices, but must be prevented for safe operation. By inserting a ferrite bead and/or an RC snubber with the recommended values below, Transphorm GaN FETs can operate in a hard-switching bridge up to their full-rated current even with a less-than-ideal PCB layout. See application note <u>AN0009: Recommended External Circuitry</u> for more information.

Ferrite Beads and Recommended RC Snubbers

Devices	Gate Ferrite Bead (FB1)	Drain Ferrite Bead (FB2)	RC Snubber Network
TP65H050WS	External FB (40 - 60 Ω) optional	8.5A (BLM21SN300SN1D) x 3 12A (BLM31SN500SZ1L) x 2	47pF/100pF + 7.5Ω

transphorm

TP90H050WS (Preliminary)

Electrical Parameters (Tj=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward	Device Characteristics	I	4	I	1	1	
V _{DSS-MAX}	Maximum drain-source voltage	900	_	-	V	V _{GS} =OV	
$V_{\text{GS(th)}}$	Gate threshold voltage ^d	3.4	3.9	4.4	V	V _{DS} =V _{GS} , I _D =0.7mA	
R _{DS(on)}	Drain-source on-resistance ^a	-	50	63		V _{GS} =10V, I _D =24A, T _J =25°C	
	Drain-source on-resistance ^a	-	105	_	mΩ	V _{GS} =10V, I _D =24A, T _J =150°C	
1	Drain-to-source leakage current	-	4	40		V _{DS} =650V, V _{GS} =0V, T _J =25°C	
I _{DSS}	Drain-to-source leakage current	-	15	-	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	-	_	100		V _{GS} =20V	
I _{GSS}	Gate-to-source reverse leakage current	_	_	-100	nA	V _{GS} =-20V	
CISS	Input capacitance	_	960	-			
Coss	Output capacitance	_	115	_	pF	V _{GS} =0V, V _{DS} =600V, <i>f</i> =1MHz	
C _{RSS}	Reverse transfer capacitance	_	_	_			
$C_{O(er)}$	Output capacitance, energy related b	-		-	pF	V_{GS} =0V, V_{DS} =0V to 600V	
C _{O(tr)}	Output capacitance, time related °	-	233	-			
Qg	Total gate charge	_	28	40		V_{DS} =600V, V_{GS} =0V to 10V, I_D =24A	
Qgs	Gate-source charge	_	10	_	nC		
Qgd	Gate-drain charge	_	6	_			
t _{d(on)}	Turn-on delay	_	_	_			
tr	Rise time	_	_	-		$V_{DS}{=}600V, V_{GS}{=}0V$ to 10V, $I_{D}{=}24A, R_{G}{=}10\Omega$	
$T_{d(off)}$	Turn-off delay	_	_	-	ns		
t _f	Fall time	_	_	_			
Reverse	Device Characteristics		1		1	1	
ls	Reverse current	-	_	22	A	\mid V_{GS}=0V, T_C=100 °C ${\leq}50\%$ Duty Cycle	
V _{SD}		-	2.2	2.6	V	V _{GS} =0V, I _S =24A, T _J =25°C	
	Reverse voltage ^a	_	1.6	1.9		V _{GS} =0V, I _S =12A, T _J =25°C	
t _{rr}	Reverse recovery time	-	30	-	ns	I _S =24A, V _{DD} =400V,	
Qrr	Reverse recovery charge	_	150	_	nC di/dt=1000A/µs, Tj=25°C		

a. Dynamic value

Equivalent capacitance to give same stored energy from 0V to 400V Equivalent capacitance to give same charging time from 0V to 400V b.

с.

Recommended gate drive: (8V to 12V, 0V) R_{G} = 10 Ω d.

July 6, 2017 Tp90h050ws.0

Test Circuits and Waveforms

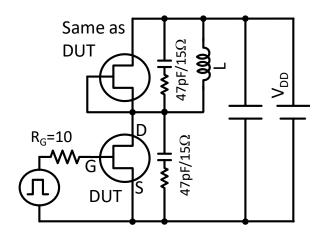


Figure 13. Switching Time Test Circuit *See app note AN0009 for methods to ensure clean switching

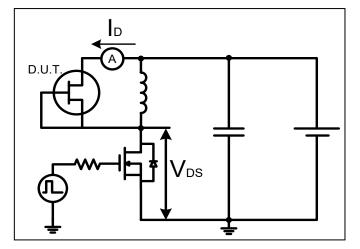


Figure 15. Test Circuit for Diode Characteristics

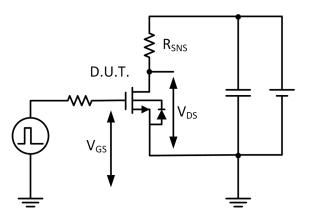


Figure 17. Test Circuit for Dynamic R_{DS(on)}

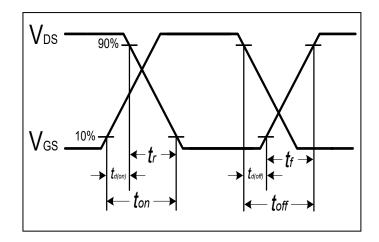


Figure 14. Switching Time Waveform

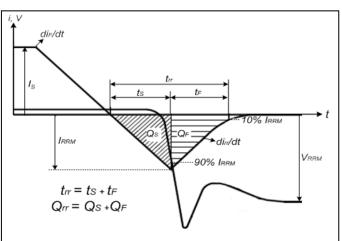


Figure 16. Diode Recovery Waveform

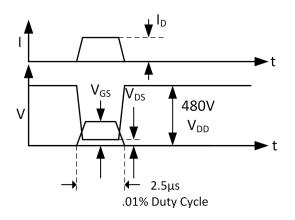
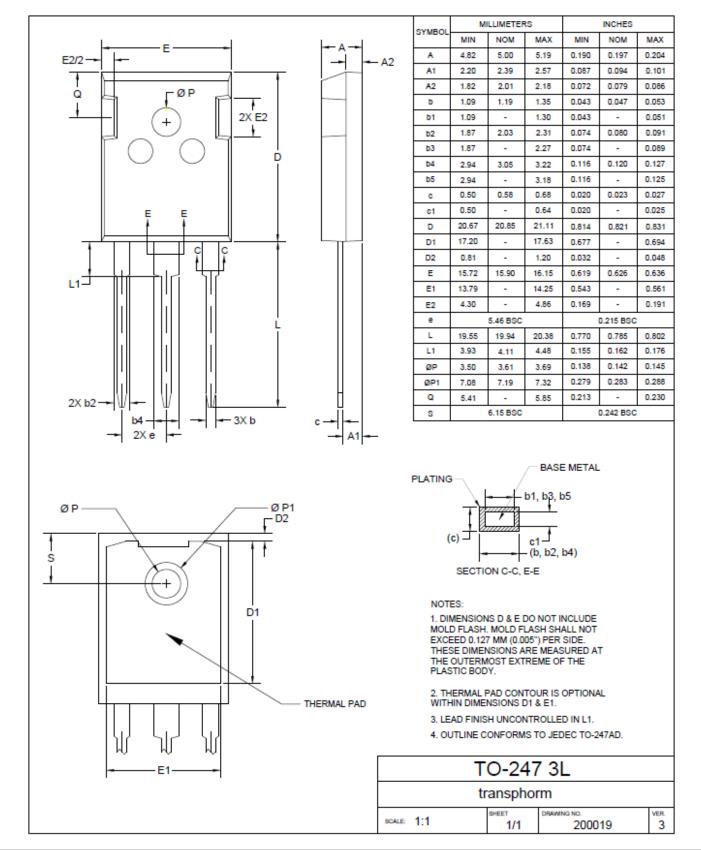



Figure 18. Dynamic R_{DS(on)} Waveform

TP90H050WS (Preliminary)

Mechanical

3 Lead TO-247 Package

Design Considerations

The fast switching of GaN devices reduces current-voltage cross-over losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	

Application Notes

- AN0002: Characteristics of Transphorm GaN Power Switches
- AN0003: Printed Circuit Board Layout and Probing
- <u>AN0004</u>: Designing Hard-switched Bridges with GaN
- AN0008: Drain Voltage and Avalanche Ratings for GaN FETs
- AN0009: Recommended External Circuitry for GaN FETs

Revision History

Version	Date	Change(s)