

2016 High performance Power Technology Seminar

IPC division

Segment Marketing Manager

Agenda

STNRG011: digital combo with all analog peripherals and drivers integrated for LLC

STNRG011 represents high voltage fully integrated Digital Combo ROM based Time Shift LLC controller with Multimode PFC Functionality

STNRG011 K-competitive advantages

Lower part count

- BOM reduction due to dedicated resources and 800V start-up Circuit, line Sense and Xcap
- Discharge integration
- Low pin count
 - SO20 package
- No-Load Power (Target <100mW)
 - Low power mode and X-cap discharge function
- Better light load efficiency
 - Enhanced Burst-mode. Improved PFC functionality
- Better dynamic response
 - Time Shift LLC control
- Optimized PFC section
 - Ramp enhanced constant-on-Time (reCOT) multimode with input voltage feedforward, THD optimizer, frequency limitation and Skipping area
- Safe operation
 - Complete set of PFC and Half bridge protections
- Flexibility, programmability and communication functions
 - FPGA emulator to develop and validate algorithms and software
 - Monitoring Function by UART Interface and Black Box recording

STNRG011 hardware

STNRG011 system concept 5

- STNRG011 addresses SMPS made of 2 stages:
 - TM PFC pre-regulator
 - Resonant LLC isolated DC/DC downstream converter

PFC control principle

- The PFC control loop is managed digitally
 - Vout is converted through the ADC
 - Compensation is done with a PI filter (calculation made by the core)
 - 2 coupled SMEDs generates the PWM signal

PFC algorithms **7**

- Ramp Enhanced Constant On Time (ST patented) with 2 speed loop
 - Allows achieving very good PF & THD and dynamic performance
 - ST Patents ST Patents US2013194842 US2013194845 US2013194845 • New "Ramp" compensation (patented) available: compensate input capacitive loads to achieve highest PF
- Multi mode operation

22

- TM @ medium / high loads
- TM, Valley skipping & skipping area @ low load
- Burst mode @ very low load

PFC algorithm: the standard COT

- PRO & CON
 - Sinusoidal input current → High PF & THD
 - High Vds @ turn-on → high switching losses

• PRO & CON

- Input current distortion → Lower PF & THD
- Lower Vds @ turn-on → Lower switching losses

The eCOT

- Using eCOT is it possible to join the benefit of COT and TM:
 - Easy implementation
 - Low switching losses
 - High PF & THD

EMI capacitor 10

• All PFCs have one or more capacitors to filter current ripple

Ramp enhanced COT (ReCOT) 11

- I_{TH} can be used to shape PFC input current
- EMI capacitor current can be compensated by applying an opposite compensation

THD optimizer 12

- Enhanced Constant on time control allows also to considerably reduce the cross-over distortion due to the conduction dead-angle occurring to the AC input current near the zero-crossings of the line voltage:
 - Defining the minimum current level before to start calculated Ton period allows PFC to process more energy as compared to that calculated by the control loop compensating not only the energy lost in MOS charging but also the inability of the system to transfer energy effectively when the instantaneous line voltage is very low
- Moreover Ramp E-COT allows compensating reactive energy (current) generated by big input filtering capacitor

LLC control principle 13

- The LLC control loop is managed in mixed mode
 - Compensation is done at secondary side with standard analog circuitry
 - The information from the optocoupler is sampled with the ADC

The core calculates the time shift and the SMEDs generates the HS & LS PWM

LLC algorithms 14

• Time-shift control (ST patented)

- Improved dynamic performance
- Easy compensation
- Great input voltage ripple rejection (> 50dB)

- Advanced features & protections
 - Safe start
 - Anti Capacitive Protection
 - 2 levels Over Current management
- LLC stage drives Burst mode operation

- Time-shift T_D is defined as time elapsing from zero-crossing of tank current to next half-bridge toggling
- A relationship exists between T_D and tank current phase-shift Φ_Y :

$$\Phi_Y = 180^{\circ} \left(1 - 2 \frac{T_D}{T_{SW}} \right)$$

PWM is toggled T_D after tank current zero crossing

• T_D is calculated by μ C based on ADC reading from FB

Time shift benefits vs DFC

- TSC makes LLC resonant converter dynamics very close to that of a first-order system
 - Frequency compensation is much easier
 - Response to perturbations is overdamped
- TSC improves load transient response
 - Overshoots and undershoots are nearly halved
 - Settling time is reduced 3-4 times
 any langed any langed
- TSC improves input ripple rejection
 - 100 Hz gain can be increased considerably
 - Rejection ratio increases by more than 15 dB
- TSC prevents hard switching at start-up
 - Converter reliability is improved

STNRG011 configurability 17

- STRNG011 allows the user to configure and optimize the system setting several parameters on its NVM (Non Volatile Memory)
- A complete tools system is available
 - Interface board to connect the STNRG011 board communication connector with the PC USB port
 - PC GUI
- A PC tool for PFC tuning dianyuan.com

STNRG011 Ecosystem 18

STNRG011 NVM key parameters 19

- STNRG011 key parameters that can be adjusted via NVM (no HW changes)
 - Protections behavior (latch / autorestart)
 - Protections levels & timings
 - Comparators filtering & hysteresis
 - PFC soft start
 - PFC loop compensation
 - PFC light load behavior
 - PFC RECOT parameters (on the fly THD adjustment)
 - PFC maximum frequency
 - PFC nominal, minimum (UVP) and maximum (OVP) output voltages
 - LLC dead-time
 - LLC safe start & soft start parameters
 - Burst mode operation (in/out thresholds, burst pulses definition)

150W-12V STNRG011 evaluation board

150W-12V adapter based on STNRG011 and SRK2001

Maximum efficiency: state of the art algorithms for PCF & LLC

Communication: programmability and data monitoring

Fully Integrated solution: HV startup & drivers

20

150W-12V STNRG011 evaluation board 21

• Board characteristics:

- Input: 90 ÷ 264 Vac, 45 ÷ 65 Hz
- Output: 12Vdc 12.5A
- No load: Pin < 100mW
- MHR acc. EN61000-3-2 class D and JEITA-MITI class D
- EMI acc. EN55022 class B
- Black box & factory data features
- I/F board & PC GUI available

150W-12V Adapter block diagram 22

150W-12V Adapter schematic (MB) 23

150W adapter performance (preliminary) 24

115Vac	Vout	lout	Pout	Pin	Eff	PF	THD
100mW	12.28	0.00887	0.108924	0.18	60.51%		
250mW	12.26	0.02082	0.255253	0.417	61.21%		
500mW	12.25	0.04178	0.511805	0.746	68.61%		
10%	12.03	1.2481	15.01464	17.95	83.65%		
20%	12.03	2.4975	30.04493	35.05	85.72%		
25%	12.03	3.1275	37.62383	43.11	87.27%		
50%	12.01	6.2418	74.96402	83.12	90.19%	0.984	6.10%
75%	11.99	9.3731	112.3835	122.99	91.38%		
100%	11.97	12.502	149.648 <mark>9</mark>	163.66	91.44%	0.994	3.47%
		느낌께	i l				311_(

No load	Pin
115 Vac	70 mW
230 Vac	93.4 mW

Excellent no load consumption!

	4 points avg	
	90.03 %	

230Vac	Vout	lout	Pout	Pin	Eff	PF	THD
100mW	12.27	0.00887	0.108835	0.232	46.91%		
250mW	12.26	0.02087	0.255866	0.421	60.78%		
500mW	12.24	0.04179	0.51151	0.737	69.40%		
10%	12.02	1.2496	15.02019	17.48	85.93%		
20%	12.03	2.5125	30.22538	34.89	86.63%		
25%	12.03	3.1275	37.62383	42.44	88.65%		
50%	12.01	6.1237	73.54564	80.71	91.12%	0.933	8.55%
75%	11.99	9.3731	112.3835	121.47	92.52%		
100%	11.97	12.503	149.6609	161.07	92.92%	0.982	2.55%

|--|

91.30 %

Performance check 25

Eu Coc 5 EPS Tier 2	Limits	Result 115Vac	Result 230Vac	Status
4 points avg	> 0.87	0.900	0.913	Pass
Eff @ 10%	> 0.79	0.836	0.859	Pass
No load	< 0.15 W	0.07	0.0934	Pass

Energy star 6.0 computer) for	Limits		Result 115Vac	Result 230Vac	Status
Eff @ 20%		> 0.82		0.857	0.866	Pass
Eff @ 50%		> 0.85	Ľ	0.902	0.911	Pass
Eff @ 100%	EE XI	> 0.82		0.914	0.929	Pass
PF @ 100%	-9 //	> 0.9		0.994	0.982	Pass

DOE – EISA 2007 (from 2016)	Limits	Result 115Vac	Result 230Vac	Status
4 points avg	> 0.88	0.900	0.913	Pass
No load	< 0.15 W	0.07	0.0934	Pass
ErP Lot 7	Limits	Result 115Vac	Result 230Vac	Status
ErP Lot 7 4 points avg	Limits > 0.87	Result 115Vac 0.900	Result 230Vac 0.913	Status Pass

Additional ST Innovative solutions

Presentation Title 15/11/2016

STCMB1 27

ST new analog solution for SMPS up to 250W

Higher integration with smaller pin count vs. competition

ST Qualcomm[®] Quick Charge[™]

28

Thank You

