1. 概述

S0-1901AD 较为完整的试验系统如下图所示,包含直流可调电源,电子负载, 监控的上位机,示波器,电网模拟装置和试验模块。其中最核心的为我司自主开 发的试验模块,该模块包含了通过配置,可以实现对 Buck、Boost、Buck-Boost、 半桥、全桥、单相逆变电路、全桥 PWM 整流、单相并网控制及其衍生拓扑的验证。 **有兴趣交流 PSIM 硬件在环试验技术的同学,可添加微信: sevenohm1。**

针对 BUCK 波试验,该系统可完成开环试验、电压闭环试验、电流闭环试验、 双闭环试验、CCM 模式、DCM 模式、输入电压突变、负载突变试验等。配带完整 试验模型和操作说明。

2. 仿真原理图的搭建

2.1 仿真原理图

仿真原理图如下图1所示,其中,蓝色线框圈定的部分为主电路和控制电路, 红色线框圈定的部分为仿真参数设置模块部分,黄色线框圈定的部分为仿真示波 器(用于观察仿真过程中产生的波形),各部分模块和参数会在以下内容中逐步 去介绍。

图1 仿真原理图

1.2 主电路和控制电路

主电路中各个元件功能和参数如下图2所示,其中红色线框圈定的部分为软 启动功能模块,黄色线框圈定的部分为给定值,给定值为12V,通过比例变换将 其变换为0-5V之间的数值,用于与比较器比较,产生方波控制开关导通、关断。

图 3 所示为控制电路部分拓扑图,其中黄色线框圈定的部分为三角波发生器 (Triangular),其参数设置如图 4 所示。红色线框圈定的部分为积分电路,由 直流电源 (DC),积分模块 (Integrator)和限幅模块 (Limiter)组成,参数设 置如图 5 所示。标有 Min 的方块为 Maximum/Minimum Block,用来比较多路输 入的大小 (输入的信号通道路数可以设置),通过对模块的设置可以输出较大值 或者输出较小值。绿色线框圈定的部分为运算放大器模块 (Op. Amp.)用作产生 方波的比较器,其参数设置如图 6 所示。

图 2 主电路和控制电路拓扑图

riangular)
arameters Other Info	Color	
Triangular-wave voltage	source	Help
		Display
Name	VTRI1	
V_peak_to_peak	5	V .
Frequency	Freq	V .
Duty Cyde	0.5	
DC Offset	0	
Tstart	0	
Phase Delay	0	

图 4 Triangular 模块参数设置

DC		×
Parameters Other Info	Color	
DC voltage source		Help
		Display
Name	VDC2	
Amplitude	0.01	L 1
ntegrator		×
Parameters Other Info	Color	
Integral block		Help
		Display
Name	B1	
Time Constant	1/Freq	· •
Initial Output Value	0	▼ .
imiter		×
Parameters Other Info	Color	
Limiter		Help
		Display
Name	LIM2	
Lower Limit	0	· •
1	12	

图 5 积分模块参数设置

Op. Amp.		>
Parameters Other In	fo Color	
Operational amplifier		Help
		Display
Name	OP_AMP1	
Voltage Vs+	5	·
Malkana Ma	-5	

图 6 运算放大器模块

1.3 仿真参数设置部分

仿真参数和主电路中的变量参数的设置在仿真参数设置部分完成,由 Parameter file 模块和 Simulation Control 模块,其中 Parameter File 模块 用来设置放置模型中的一些参数的设置,Simulation Control 模块用来设置仿 真步长、仿真时间等一些仿真参数。具体参数设置如图 7、图 8 所示。

<pre>param_2ch.txt</pre>	×
File	
Parameter file I Help	
Name ParameterSet	
File 力电子开发套件V降压转换器	SPEK-120\PSIM_DCDC\param_2ch.tx
//switch frequece Freq=20000 //The grid parameter //AD ratio Gv=1/42 Gid=1/7.4 Gidc=1/6.2	A 1
	~
<	>

图 7 Parameter file 模块参数设置

Simulation Contro	1	×
Parameters SimCoo	er Color	
Parameters		Help
Time step	1E-006	
Total time	0.1 Free rur	1
Print time	0	
Print step	1	
Load flag	0	
Save flag	0 🔽	
Hardware Target	None	Ψ.

图 8 Simulation Control 模块参数设置

1.4 仿真波形图

根据上面描述完成软件仿真模型的搭建,并进行仿真得到关键点的仿真波形 如下,仿真获得的波形均为真实值波形。

图 10 主管驱动波形和电感电流波形

2. 匹配目标硬件的仿真模型搭建

2.1 仿真主电路的组成

主电路拓扑图与仿真原理图结构一样,只是根据硬件电路进行了部分调整, 其中续流二极管由 MOS 管 T2 的反并联二极管来替代,电路工作过程中 MOS 管 T2 始终处于关闭状态,如图 11 所示。

图 11 主电路拓扑图

2.2 方波发生电路

方波发生电路如下图 12 所示,其中 pwma1 驱动 MOS 管 T2 并使其时钟处于关闭状态,pwmah 驱动 MOS 管 T1 使得电路工作在 Buck 电路模式下。方波发生电路 由 TI DSPF28335 集成的 PWM 模块产生,其为 PSIM 内部集成的匹配 F28335 的模块,如图 13 所示,其参数设置如图 14 所示。

图 12 方波发生电路

图 13 PWM 模块的选择

phase PWM					
arameters Other Info O	olor				
2-phase PWM generator (TI	F28335)	Help]		
		Display			Display
Name	TI_FUNCPWM1		Use Trip-Zone 6	Disable Trip-Zone 6	• E •
PWM Source	PWM 1	• • •	Trip Action	High impedance	• E •
Mode Type	Mode 5	•	Peak Value	24	·
Sampling Frequency	Freq		Initial Input Value A	0	
PWM Freq. Scaling Factor	1		Initial Input Value B	0	
Trigger ADC	Do not trigger ADC	• E -	Start PWM at Beginning	Do not start	· - :
ADC Trigger Position	Beginning of carrier war				
Use Trip-Zone 1	Disable Trip-Zone 1	• E •			
Use Trip-Zone 2	Disable Trip-Zone 2				
Use Trip-Zone 3	Disable Trip-Zone 3	• E •			
Use Trip-Zone 4	Disable Trip-Zone 4				
Use Trip-Zone 5	Disable Trip-Zone 5				

图 14 2-ph PWM 模块的设置

2.3 软启动模块的设置

软启动模块由 Simplified C Block 模块实现,通过简单的 C 代码实现软启 动控制,C 代码如图 16 所示。给定参数可以通过 SCI Input 模块通过串口给定, 该模块可以设置初始值,在 SCI 没有设置参数时默认使用初始值,初始值通过变 量在 Parameter file 模块里设置, SCI Input 模块的参数设置如图 17 所示。

图 15 软启动模块

implified C Block			×
arameters Color			
Simplified C Block	Help]	
Block Name: SSCB2222	Number of Input/Out; Input:	5 Output:	1
C Code Following variables are valid: Input x1, x2, Output y1	t, delt x3, x4, x5		
$ \begin{cases} f(x_3 = -1) \\ \{ & f(f(x_2 = x_1)a(x_3 + c_x_2) \\ (& y_1 = x_3 + x_5) \\ e^{ber} ff(x_2 < = x_1)a(x_3 + c_3) \\ e^{ber} ff(x_2 < = x_1)a(x_3 + c_3) \\ e^{ber} f(x_2 < x_3)a(x_3 + c_3) \\ e^{ber} f(x_3 + c_$) >x2])		~
Edit	Image	Check Code	

图 16 软启动 C 代码

SCI Input		
Parameters Other In	fo Color	
SCI input (TI F28335)		Help
	C	Display
Name	PSM_F28335_COMMIN5	
	Deef 4	- II + I

图 17 SCI Input 模块的设置

2.4 数据采集和转换模块(ADC 转换模块)

主电路的运行参数,通过 F28335 内部集成的 ADC 转换器完成采集,如图 18 中黄色线框圈定的模块,其中 A0-A7、B0-B7 为模拟输入口(不使用时应接地), D0-D15 位数字输出口(不使用时可以悬空),与模拟输入口一一对应,参数设置 如图 19 所示。红色圈定的模块为 2 阶低通滤波器,用于对模拟量进行滤波器, 设置方式如图 20 所示。

图 18 数据采集模块

		Display			Display			Display
Name	TI_ADC1		Ch A5 Mode	DC	• E •	Ch B3 Mode	DC	• □ :
ADC Mode	Continuous	•	Ch A5 Gain	1.0	□	Ch B3 Gain	1.0	
Ch A0 Mode	DC	•	Ch A6 Mode	DC	•	Ch B4 Mode	DC	• 🗆
Ch A0 Gain	1.0		Ch A6 Gain	1.0		Ch B4 Gain	1.0	E 2
Ch A1 Mode	DC	•	Ch A7 Mode	DC	·	Ch B5 Mode	DC	• 🗆 :
Ch A1 Gain	1.0	- I	Ch A7 Gain	1.0	L 🗆	Ch B5 Gain	1.0	
Ch A2 Mode	DC	•	Ch B0 Mode	DC		Ch B6 Mode	DC	• □ :
Ch A2 Gain	1.0	- ·	Ch B0 Gain	1.0		Ch B6 Gain	1.0	
Ch A3 Mode	DC		Ch B1 Mode	DC		Ch B7 Mode	DC	• □ :
Ch A3 Gain	1.0	□ <u> </u>	Ch B1 Gain	1.0		Ch B7 Gain	1.0	
Ch A4 Mode	DC	•	Ch B2 Mode	DC				
Ch A4 Gain	1.0		Ch B2 Gain	1.0				

图 19 ADC 转换模块设置

Parameters Other Info	Color	
2nd-order lowpass filter		Help
		Display
Name	LP7	
Gain	1	<u> </u>
Cut-off Frequency	100000	v -

图 20 2 阶低通滤波器设置

2.5 数据转换模块

为满足 ADC 数据采集模块的电压参数范围,电压、电流等参数在输入 ADC 转换模块前均需经过变换,因此要想得到电压、电流的真实值需要对采集到的数 据进行反向变换,具体变换方式如图 21 所示。其中,红色线框圈定的模块为直 流偏置常数,因 F28335 的 ADC 转换模块只能采集正电压、电流,因此采集时需 进行偏置设置。

图 21 数据转换模块

2.6 全局参数设置部分

为确保仿真模型能正常运行,需对仿真环境和 F28335 模块的全局参数进行 设置,需要设置的模块如下,图 22 为仿真变量及参数设置模块,图 23 为仿真环 境参数设置模块,图 24 为 SCI 模块参数设置模块,主要为设置 SCI 通信的波特 率和引脚分配(需与硬件匹配)。图 25 为 F28335 时钟设置模块,外部时钟为 30MHz, F28335 内部倍频为 150MHz。图 26 为 F28335 全局设置模块,用于设置 GPIO 的工 作模式,

图 22 Parameter file 模块参数设置

Simulation Contro		×
Parameters SimCoo	er Color	
Parameters		Help
Time step	1E-006	
Total time	1 Free run	1
Print time	0	
Print step	1	
Load flag	0 💌	
Save flag	0 💌	
Hardware Target	TI F28335 F	lash RAM Release 💌

A

SCI Configuration		×
Parameters Other Info	Color	
SCI configuration (TI F28	335)	Help
		Display
Name	PSM_F28335_COMMC	FG1
SCI Port	SCIC (GPIO62, 63)	• - •
Speed (bps)	19200	• • •
Parity Check	None	•
Output Buffer Size	64	

DSP Clock)
Parameters Other Info	Color	
DSP speed specification (T	I F28335)	Help
	1	Display
Name	PSM_F28335_DSPSPD1	
External Clock (MHz)	30	- <u>-</u>
Contraction Contractions	150	

ardware Ci	onfig	guration								
arameters	Colo									
Hardware Ci	onfig	uration for TI F	2833	15					Help	Unlock
Select All		Unselect A	U.							
GP100	4	Digital Input	~	Digital Output	~	PWM				
GPI01	V	Digital Input	~	Digital Output	~	PWM	~	Capture		
GPI02	V	Digital Input	~	Digital Output	~	PWM				
GP103	V	Digital Input	~	Digital Output	~	PWM		Capture		
GPIO4	V	Digital Input	~	Digital Output	~	PWM				
GP105	4	Digital Input	~	Digital Output	~	PWM	~	Capture		
GP106	V	Digital Input	~	Digital Output	~	PWM				
GP107	1	Digital Input	~	Digital Output	~	PWM	~	Capture		
GP108	V	Digital Input	~	Digital Output	~	PWM				
GP109	4	Digital Input	~	Digital Output	~	PWM		Capture		
GPIO 10	1	Digital Input	~	Digital Output	~	PWM				
GPI011	1	Digital Input	~	Digital Output	~	PWM	~	Capture		
GP1012	V	Digital Input	~	Digital Output	7	Trip-Zone				
GPIO13	V	Digital Input	~	Digital Output	~	Trip-Zone				
GPIO14	V	Digital Input	~	Digital Output	~	Trip-Zone				
GPI015	1	Digital Input	~	Digital Output	~	Trip-Zone				
GPIO16	V	Digital Input	~	Digital Output	~	Trip-Zone				
GPI017	1	Digital Input	~	Digital Output	V	Trip-Zone				

图 26 F28335 全局参数设置。

2.7 仿真波形

根据上述描述,完成匹配目标硬件的软件模型的搭建,并进行仿真,得到关 键仿真模型如下。

图 27 输入、输出电压波形

图 28 主管驱动波形和电感电流波形

3 硬件验证

3.1 生成匹配 F28335 芯片的 C 程序

当仿真电路在 PSIM 中仿真通过后,就可以使用 Simulate >> Generate Code 生成 C 代码,点击 Generate Code 选项后,将在仿真文件的目录下生成一个同名 的文件夹,这个文件夹里纪委生成的 C 代码工程文件,这个工程文件可以通过 TI 公司的 Code Composer Studio 6.0 (缩写为 CCS 6.0)编译工具打开。

3.2 C 代码的编译

PSIM 生成的 C 代码工程的具体导入步骤如下图所示,使用 TI 公司开发的 Code Composer Studio 6.0 编译工具打开,打开以后即可完成编译功能,以下示例 为编译为下载至 Flash 中的 C 代码,而非 RAM。

图 29 选择入 3.3 版本的工程

() = = (0 • (√ •) <u>0 € = = 0</u>	Debug II Select Select	ort Legicy CCS Projects Legacy CCS Project a legacy CCS project or a	directory to search for pr	ojects.	
	Sele	rt a project file:			Rrowse
	O sele	ct search directory:			Scowse
	Discov	red legacy projects:			
					Sallect All
	O Cog #Kee 	y projects into avaitispace profiginal location for nec reate a subfisider for nech	, h project ficilipse project (recomm	sended)	
	۲		+ Back Ment >	Finida	Cescel
	Corsole =			d 0 • 😁 • = c	8 Problems 20

图 30 选择工程所在目录

图 31 打开 Psim 生成的工程

D & T D Debug II	Select Compiler Select a compiler version	1 🖄			
	Project	Device	Compil 6:4:12		101
	٢		Gack	Next > Finish	Cancel

图 32 完成工程的导入

Den Carte Ca		
Projet Lo 21 Randbebug 22 Rankelease 3 Lot d 33 Fishholease 3 Inth 44 FishkanRelease 41 TanDebug 44 FishkanRelease 44 TanDebug 44 FishkanRelease 44 TanDebug 45 T	nnDebug]	♥ Detsaj III ● D452355001 80V3.ccml (Code Compose Studio - Owice Debagging) ● D452355001 80V3.ccml (Code Compose Studio - Ovice Debagging) ● Texas Instrumenti XD5100-3 USB Druktor OVC28xs (Disconnected) Univer- 0.00000000000000000000000000000000000
In Transformer The Transformer Th		() (set of the end of the set of

图 33 完成工程的编译

3.3 C代码的下载

工程导入至 Code Composer Studio 6.0 编译工具并完成编译后,下一步即为 完成代码的下载,代码的下载是在 CCS 6.0 的 Debug 环境下完成的,所以编译完 成后需切换至 CCS Debug 环境下。此外,在进行下载之前需通过 DSP 仿真器将 计算机与 F28335 的 JTAG 接口完成连接,连接完成以后即可通过以下步骤完成 下载,下载完成后重新为 F28335 目标板进行上电后即可运行程序。

图 34 选择. ccxml 文件右键单击

图 37 编译文件的下载

4. 硬件验证

完成代码下载后,就可以启动硬件进行验证,通过示波器检测关键部位的波 形,进行验证,如下图所示。