Transformer Driver for Isolated Power Supplies

FEATURES

- Push-Pull Driver for Small Transformers
- Single 3.3 V or 5 V Supply
- High Primary-side Current Drive:
 - 5 V Supply: 350 mA (max)
 - 3.3 V Supply: 150 mA (max)
- Low Ripple on Rectified Output Permits Small
 Output Capacitors
- Small 5-pin SOT23 Package

APPLICATIONS

- Isolated Interface Power Supply for CAN, RS-485, RS-422, RS-232, SPI, I2C, Low-Power LAN
- Industrial Automation
- Process Control
- Medical Equipment

DESCRIPTION

The ZCC6501 is a monolithic oscillator/power-driver, specifically designed for small form factor, isolated power supplies in isolated interface applications. It drives a low-profile, center-tapped transformer primary from a 3.3 V or 5 V DC power supply. The secondary can be wound to provide any isolated voltage based on transformer turns ratio.

The ZCC6501 consists of an oscillator followed by a gate drive circuit that provides the complementary output signals to drive the ground referenced N-channel power switches. The internal logic ensures break-before-make action between the two switches.

The ZCC6501 is available in a small SOT23-5 package, and is specified for operation at temperatures from -40°C to 125°C.

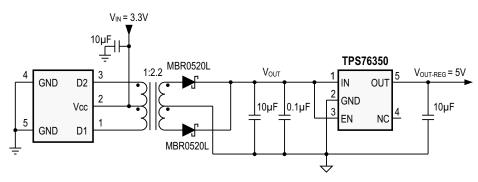
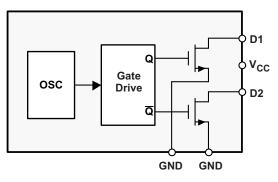
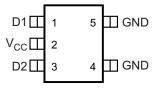



Figure 1. Typical Operating Circuit



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTIONAL BLOCK DIAGRAM

PIN FUNCTIONS

PIN No.	NAME	DESCRIPTION
1	D1	Drain 1
2	Vcc	Supply voltage
3	D2	Drain 2
4,5	GND	Ground

TEST CIRCUIT

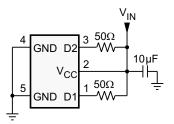


Figure 2. Test Circuit for R_{ON} , f_{OSC} , f_{St} , t_{r-D} , t_{f-D} , t_{BBM}

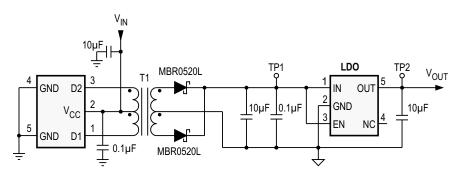


Figure 3. Test Circuit for Output Voltage and Efficiency at TP1 and TP2

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

				VALUES	
V _{CC}	Supply voltage			–0.3 V to +6 V	
V_{D1}, V_{D2}	Output switch voltage			14 V	
I _{D1P} , I _{D2P}	Peak output switch current			500 mA	
P _{TOT}	Continuous power dissipation			250 mW	
ESD	Human Body Model	ESDA/JEDEC JS-001-2012		±4 kV	
	Charged Device Model	JEDEC JESD22-C101E	All Pins	±1.5 kV	
	Machine Model	JEDEC JESD22-A115-A		±200 V	
T _{STG}	Storage temperature range			–65°C to 150°C	
TJ	Junction temperature			170°C	

(1) Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS is not implied. Exposure to absolute-maximum-rated conditions for extended periods affects device reliability.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾			
		DBV 5-PINS	UNITS	
θ_{JA}	Junction-to-ambient thermal resistance	208.3		
θ_{JCtop}	Junction-to-case (top) thermal resistance	87.1		
θ_{JB}	Junction-to-board thermal resistance	40.4	°C/W	
ΨJT	Junction-to-top characterization parameter	5.2	0/10	
Ψ_{JB}	Junction-to-board characterization parameter	39.7		
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	N/A		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report,

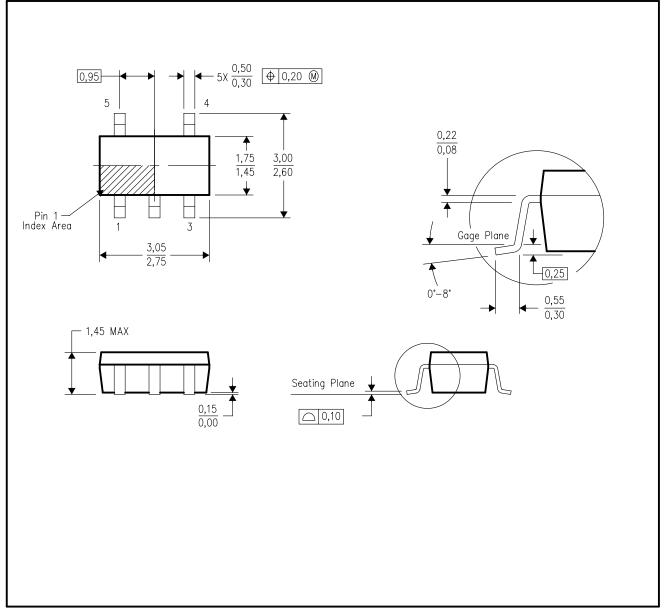
RECOMMENDED OPERATING CONDITIONS

				MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			3		5.5	V
V_{D1}, V_{D2}	Output switch voltage	$V_{CC} = 5 V \pm 10\%$,	When connected to Transformer with primary winding Center-tapped	0		11	V
		$V_{CC} = 3.3 \text{ V} \pm 10\%$		0		7.2	
I _{D1} , I _{D2}	D1 and D2 output switch current – Primary-side	$V_{CC} = 5 V \pm 10\%$	V_{D1} , V_{D2} Swing ≥ 3.8 V,			350	0
		$V_{CC} = 3.3 \text{ V} \pm 10\%$	V_{D1}, V_{D2} Swing $\ge 2.5 V$,			150	mA
T _A	Ambient temperature			-40		125	°C

ELECTRICAL CHARACTERISTICS

Over full-range of recommended operating conditions, unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT	
R _{ON}	Switch-on resistance	V _{CC} = 3.3 V ± 10%, See Figure 2	1	0	
		$V_{CC} = 5.0 \text{ V} \pm 10\%$, See Figure 2	0.6	Ω	
I _{CC} Average supply current ⁽	A	$V_{CC} = 3.3 \text{ V} \pm 10\%$, no load	300		
	Average supply current ??	$V_{CC} = 5.0 \text{ V} \pm 10\%$, no load	500	uA	
f _{ST}	Startup frequency	$V_{CC} = 2.4 V$, See Figure 2	230	kHz	
f _{OSC}		V_{CC} = 3.3 V ± 10%, See Figure 2	270	kHz	
	Oscillator frequency	$V_{CC} = 5.0 \text{ V} \pm 10\%$, See Figure 2	300	КПД	
t _{r-D}	D4 D2 subscholage time	V _{CC} = 3.3 V ± 10%, See Figure 2	400		
	D1, D2 output rise time	$V_{CC} = 5.0 \text{ V} \pm 10\%$, See Figure 2	500	ns	
t _{f-D}	D1, D2 output fall time	$V_{CC} = 3.3 \text{ V} \pm 10\%$, See Figure 2	180		
		$V_{CC} = 5.0 \text{ V} \pm 10\%$, See Figure 2	100	ns	
t _{BBM}	Break-before-make time	V _{CC} = 3.3 V ± 10%, See Figure 2	600		
		$V_{CC} = 5.0 \text{ V} \pm 10\%$, See Figure 2	800	ns	


(1) Average supply current is the current used by ZCC6501 only. It does not include load current.

MECHANICAL DATA

ZCC6501

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.