HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER

<u>W K 3 8 4 2</u>

Features

- Trimmed Oscillator for Precise Frequency Control
- Current Mode Operation to 500 kHz
- Low start-up current(0.12mA)
- Automatic Feed Forward Compensation
- · Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current
- This is a Pb-Free and Halide-Free Device

Block-diagram

Page 1 of 8

PACKAGE INFORMATION

PIN CONNECTIONS

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage	VCC	30	V
Output current	Іо	±1	А
Err Amp Output Sink current	Isink	10	mA
Err Amp Input Voltage	Vin	-0.3~6.3	V
Power dissipation	Pd	1	W
Temperature of Ambient	Tamb	0-70	degC
Temperature of Storage	Tstg	-55~150	degC

Note:

Test Condition:

1. Tamb:25°C, Board thickness:1.6mm,

2. Do not exceed Pd and SOA.

Electrical Characteristics

Vcc=15V, RT =10k Ω , CT =3.3nF, Tamb=0°C \sim 70°C, Unless otherwise specified

Parameters	Symbol	Conditions	Min.	Тур.	Max.	Unit
REFERENCE SECTION						
Reference output voltage	Vref	Tj=25C, IREF=1mA	4.90	5.0	5.10	V
Line Regulation	∆Vref	12V≤Vcc≤25V		6	20	mV
Load Regulation	∆Vref	1mA≤ IREF20mA		6	25	mV
Short Circuit Output Current	lsc	Tamb=25℃	-30	-100	-180	mA
OSICILLATOR SECTION		-				
Oscillation Frequency	f	Т ј=25 °С	47	52	57	kHz
Frequency Change with	f/_VCC	12V≤Vcc≤25V		0.05	1	%
Voltage						
Oscillator Amplitude	Vosc	4 PIN PEAK VALUE		1.6		Vpp
ERROR AMPLIFIER SECTION	N					
Input Bias Current	Ibias			-0.1	-2	uA
Input Voltage	Vi(E>A)	V1=2.5V	2.42	2.5	2.58	V
Open Loop Voltage Gain	Gvo	2V≤VO≤4V	60	90		dB
Power supply Rejection Ratio	PSRR	12V≤VCC≤25V	60	70		dB
Output Sink Current	Isink	V2=2.7V, V1=1.1V	2	6		mA
Output Source Current	Isource	V2=2.3V, V1=5V	-0.5	-0.8		mA
High Output Voltage	Voh	V2=2.3V, RL=15k Ω to GND	5	6		V
Low Output Voltage	Vol	V2=2.7V, RL=15k Ω to Pin8		0.7	1.1	V
CURRENT SENSE SECTIO	Ν					
Gain	Gv		2.85	3	3.15	V/V
Maximum input signal	Vi(max)	V1=5V	0.9	1	1.1	V
Power Supply Rejection Ratio	PSRR	12V≤VCC≤25V		70		dB
Input Bias Current	Ibias			-2	-10	uA
OUTPUT SECTION						
Low Output Voltage	Vol	ISINK=20mA		0.1	0.4	V
		ISINK=200mA		1.5	2.2	V
High Output Voltage	Voh	ISOURCE=20mA	13	13.5		V
		ISOURCE=200mA	12	13.0		V
Rise Time	tR	CL=1nF		50	150	nS
Fall Time	tF	CL=1nF		50	150	nS
UNDER-VOLTAGE LOCKOUT SECTION						
	Vth(ST)		14.5	16.0	17.5	V
Min. Operating Voltage			8.5	10.0	11.5	V
PWM SECTION						
Min. Duty Cycle	D(min)		94	96		%
Max. Duty Cycle	D(max)				0	%

https://www.ksemi.cn

深圳宜迈科技有限公司

Shenzhen IMES Tech Co., Ltd

Total Standby Current						
Start-up Current	IST			0.12	0.3	mA
Operating Supply Current	Icc(OPR)	V3=V2=0V		11	17	mA
Zener Voltage	Vz	Icc=25mA		34		V

Test Circuit

Fig. 1

MECHNICAL DIMENSION

1. SOP

2. DIP

Naming Rules

History

Version	Contents	Date	Author
1.0	Create documents	2017.11.1	Jason

DISCLAIMER

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Winkore or IMES does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by any conduct of Winkore or IMES. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless. Customers using or selling Winkore OR IMES products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Winkore OR IMES for any damages arising or resulting from such use or sale.

IMES& Winkore disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Winkore and IMES's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. Suzhou Winkore Microelectronics CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error preventioncircuits for safe design, redundant design, and structural design.

In the event that any or all Winkore or IMES's products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winkore or IMES believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

深圳宜迈科技有限公司

Shenzhen IMES Tech Co., Ltd

CONTACT US

