专用 3 节可充电电池保护 IC

产品概述

ZCC2652 系列是专用3 节可充电电池保护芯片,具有高精度、高集成度的特点,适用于电动工具、吸尘器以及小型后备电源等。ZCC2652 通过检测各节电池的电压、充放电电流以及环境温度等信息实现电池过充、过放、放电过电流、短路、充电过电流、温度保护等保护功能,通过外置电容来调节过充、过放、过电流保护延时。

功能特点

① 各节电池的高精度电压检测功能;

●过充电检测电压 3.6 V ~ 4.6 V 精度±25 mV (+25℃)

精度±40 mV(-40℃至+85℃)

●过充电滞后电压 0.1 V 精度±50 mV

●过放电检测电压 1.6 V ~ 3.0 V 精度±80 mV

●过放电滞后电压 0 / 0.2 / 0.4 V 精度±15 mV

② 3 段放电过电流检测功能;

●过电流检测电压1 0.025 V ~ 0.30 V 精度±15 mV

(50 mV 步进)

●过电流检测电压2 0.2 / 0.3 / 0.4 / 0.6 V

●短路检测电压 0.8 / 1.2 V

③ 充电过电流检测功能;

●充电过电流检测电压 -0.03 /-0.05 / -0.1 / -0.15 / -0.2 V

④ 延时外置可调:

●通过改变外接电容大小设置过充电、过放电、过电流1、过电流2 检测延迟时间

- ⑤ 可通过外部信号控制充电、放电状态;
- ⑥ 充、放电控制端子最高输出电压12 V;
- ⑦ 温度保护功能:
- ⑧ 宽工作温度范围: -40℃~85℃;
- ⑨ 断线保护功能;
- ⑩ 低功耗;

●工作时(帯温度保护) 25 µA 典型值

●工作时(无温度保护)

15 µA

典型值

●休眠时

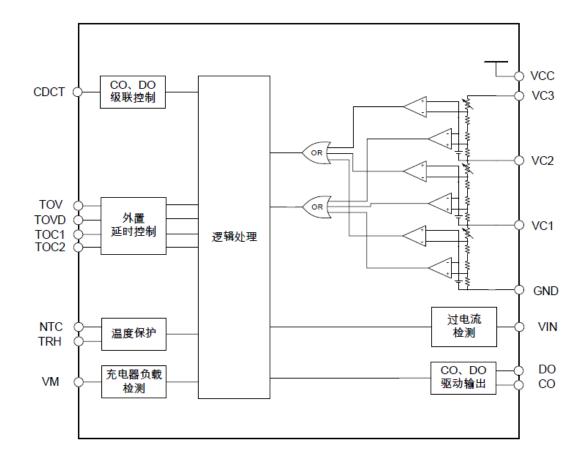
6 μΑ

典型值

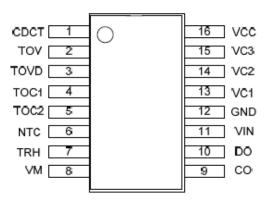
应用领域

封装形式

●电动工具


●S0P16

●吸尘器


●TSSOP16

●小型UPS 后备电源

功能框图

引脚排布

Top View

引脚号	名称	描述			
1	CDCT	CO、DO控制端子			
2	TOV	接电容,用于控制过充电检测延时			
3	TOVD	接电容,用于控制过放电检测延时			
4	TOC1	接电容,用于控制过电流1检测延时			
5	TOC2	接电容,用于控制过电流2检测延时			
6	NTC	接负温度系数热敏电阻,用于温度检测			
7	TRH	接电阻,用于调节高温保护温度			
8	VM	过电流保护锁定、充电器及负载检测端子			
9	СО	充电控制MOS 栅极连接端子,高电平与高阻态输出,最高12V			
10	DO	放电控制MOS 栅极连接端子,CMOS 输出,最高12V			
11	VIN	放电过电流及充电过电流检测端子			
12	GND	芯片的地、电池1 的负电压连接端子			
13	VC1	电池1 的正电压、电池2 的负电压连接端子			
14	VC2	电池2 的正电压、电池3 的负电压连接端子			
15	VC3	电池3 的正电压			
16	VCC	芯片的电源、电池 3 的正电压连接端子			

绝对最大额定值

项目	符号	适用端子	绝对最大额定值	单位
电源电压	Vcc		GND-0.3 ~ GND+25	V
各节电池电压	VCELL	Vcell3、Vcell2、Vcell1	GND-0.3 ~ GND+6	V
VM 输入端子电压	VM	VM	VM GND-20 ~ GND+25	
DO 输出端子电压	VDO	DO	GND-0.3 ~ VCC+0.3	
CO 输出端子电压	Vco	СО	GND-20 ~ VCC+0.3	V
工作环境温度 TA -40 ~ 8		-40 ~ 85	$^{\circ}$	
贮存温度	Тѕтс		-40 ~ 125	$^{\circ}$

注意: 绝对最大额定值是指无论在任何条件下都不能超过的额定值。一旦超过此额定值,有可能造成产品劣化等物 理性损伤。

电气特性

(除特殊说明外: TA=25℃

:	项目	符号	测试条件	最大值	典型值	最小值	单位
电源电压		VCC		5		25	V
正,	常功耗	Ivcc	V1=V2=V3=3.5V			25	uA
休日	眠功耗	ISTB	V1=V2=V3=2.0V			10	uA
	保护阈值	VDET1	V1=V2=3.5V V3=3.5→4.4V	4. 225	4. 25	4. 275	V
	保护延时	TOV	V1=V2= 3.5V COV=0.1µF V3=3.5V→4.4V	0.5	1.0	1.5	S
过充电	解除阈值	VREL1	V1=V2=3.5V V3=4.4V→3.5V	4. 08	4. 13	4. 18	V
	解除延时	TREL1	V1=V2=3.5V V3=4.4V→3.5V	10	20	30	ms
	温度系数1	KU1	Ta= -40°Cto 85°C	-0.6	0	0.6	mV/℃
	保护阈值	VDET2	V1=V2=3.5V V3=3.5V→2.0V	2. 72	2.8	2.88	V
过放电	保护延时	TOVD	V1=V2=3.5V COVD=0.1µF V3=3.5V→2.0V	0.5	1.0	1.5	s
	解除阈值	VREL2	V1=V2=3.5V V3=2.0V→3.5V	2. 9	3. 0	3. 1	V
	解除延时	TREL2	V1=V2=3.5V V3=2.0V→3.5V	10	20	30	ms
	保护阈值	VOC1	V1=V2=V3=3.5V V4=0V→0.12V	0. 085	0. 1	0. 115	V
放电过流1	保护延时	TOC1	V1=V2=V3=3.5V COC1=0.1µF V4=0V→0.12V	100	200	300	ms
	解除延时	TROC1	V1=V2=V3=3.5V	100	200	300	ms

			V4=0V→0.12V→0V				
	过流下拉电阻	DV/MC	V1=V2=V3=3.5V	100	200	F00	1.0
	以抓下 拉电阻	RVMS	V4=0V→0.12V	100	300	500	kΩ
	温度系数 2	KU2	Ta= -40°Cto 85°C	-0. 1	0	0. 1	mV/℃
	(H. I.)) - (I.	\/O.O.O.	V1=V2=V3=3.5V	0.00	0.4	0.40	V
	保护阈值	VOC2	V4=0V→0.5V	0. 32	0. 4	0. 48	V
			V1=V2=V3=3.5V				
过流2	保护延时	TOC2	COC2=0.1µF	10	20	30	ms
			V4=0V→0.5V				
	ይ 刀 ቮ人 ንኆ ክ-}-	TDOOO	V1=V2=V3=3.5V	400	200	300	ms
	解除延时	TROC2	V4=0V→0.5V→0V	100			
	保护阈值	VSHORT	V1=V2=V3=3.5V	0. 64	0.8	0. 96	V
短路			V4=0V→1.2V				V
及此	保护延时	TSHORT	V1=V2=V3=3.5V	100	300	600	μs
			V4=0V→1.2V→0V				
	保护阈值	VOVCC	V1=V2=V3=3.5V	-0.065	-0.05	0.025	V
充电过流			V4=0V→-0.2V		-0.05	-0. 035	
九电过机	保护延时	TOVCC	V1=V2=V3=3.5V	10	20	00	ms
			V4=0V→-0.2V		20	30	
输出电阻	CO RCO		正常态,Co 为"H"	3	5	_	
		RCO	(12V)			8	kΩ
	DO RDO		正常态,Do 为"H"	3	5	8	
		RDO	(12V)				kΩ
			保护态,Do 为"L"	0.20	0.35	0.50	

工作说明

1. 过充电

电池充电且VIN >VOVCC 即未发生充电过流时,只要VC1、(VC2-VC1)、(VC3-VC2)中任意电压值高 过VDET1并持续了一段时间ToV,芯片即认为电池包中出现了过充电状态,CO 由高电平变为高阻态, 被外接电阻下拉至低电平,将充电控制MOS 管关断,停止充电。

满足下面两个条件之一即可解除过充电状态:

(1)所有电芯的电压都低于VREL1 并持续TREL1;

(2)VM> 100mV (接入负载), 电池电压低于VDET1 并持续TREL1。

2. 过放电

电池放电且VIN< VOC1 即未发生放电过流时,只要VC1、(VC2-VC1)、(VC3-VC2)中任意电压值低于 VDET2并持续了一段时间TOVD,芯片即认为电池包中出现了过放电状态,DO 由高电平变为低电平,将放电控制MOS 管关断,停止放电,此时芯片进入休眠模式。

满足下面两个条件之一即可解除过放电状态(休眠状态):

(1)VM = 0 且所有电芯的电压都高于VREL2 并持续TREL2;

(2)VM <-100mV (接入充电器), 电池电压高于VDET2 并持续TREL2。

3. 放电过电流

在放电时,放电电流随着负载而变化,VIN 电压随着放电电流的增大而增大。当VIN 电压高于VOC1 并持续一段时间TOC1,即认为出现了过电流1;当VIN 电压高于VOC2 并持续TOC2,即认为出现了过电流2;当VIN 电压高于VSHORT 并持续TSHORT,即认为出现了短路。三种中任意一种状态出现后,DO 由高电平变为低电平,关断放电控制MOS 管停止放电,同时,过流锁定端子VM 端内部下拉电阻RVMS 接入。通常VOC1 〈 VOC2 〈 VSHORT, TOC1 〉 TOC2 〉 TSHORT。过电流保护时DO 被锁定为低电平,断开负载即可解除锁定。

4. 延时设置

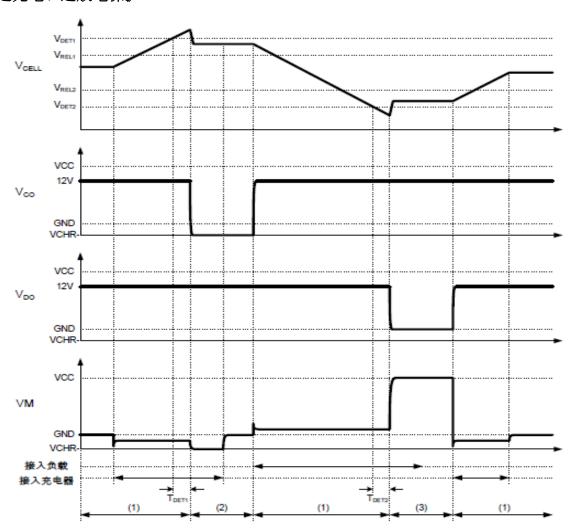
过充电延时,过放电延时由下述公式计算(单位: s): Tov = 10^7 x COV ; Tovd = 10^7 x COVD 放电过电流1 延时由下述公式计算(单位: s): Toc1 = 2×10^6 x COC1 放电过电流2 延时由下述公式计算(单位: s): Toc2 = 2×10^5 x COC2

5. 充电过电流

在充电时,如果充电电流过大且VIN<VOVCC 并持续了一段时间TOVCC,芯片认为发生了充电过电流 状态,CO 被外接电阻下拉至低电平,充电控制MOS 管关断,必须将充电器移除才能解除。

6. 温度保护

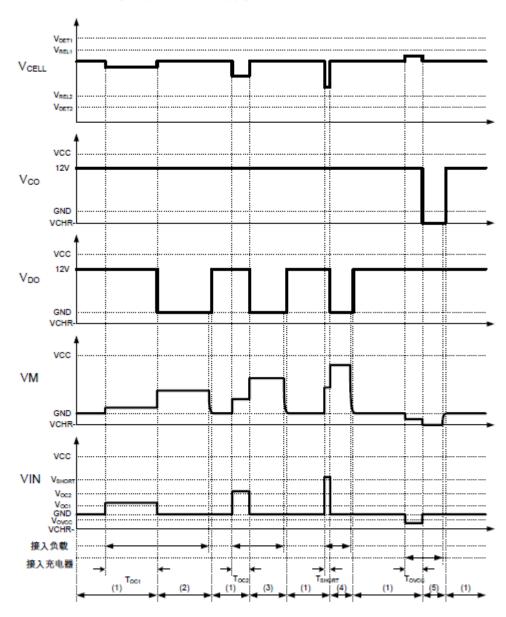
为了防止充放电过程中电芯温度过高给电芯带来的损坏,需要进行电芯高温保护。NTC 端子连接 热敏电阻用于感应温度变化,TRH 端子连接电阻用于高温保护基准的设置。过温检测时,芯片默 认为放电检测。仅当VM<-100mV 时,芯片识别为充电检测。以充电过温保护为参考,假设充电过温保护时NTC 电阻阻值RNTC,则TRH 选取的电阻阻值为RTRH=2*RNTC,此时放电过温保护时对应的 NTC 阻值为0.54*RNTC 对应的温度。我们可通过调节RTRH 大小来调节充放电过温保护的温度。 以NTC 电阻选取103AT-4 型号为例,常温下(25°C)为10K Ω ,设定充电保护温度为55°C。55°C时对应RNTC=3.5K,则选取TRH 电阻阻值为RTRH=2*RNTC=7K,放电过温保护时对应NTC 电阻大小为


0. 54*RNTC=1.89K,对应温度为75℃。充电过温保护迟滞为5℃,放电过温保护迟滞为15℃。所以当充电温度高于保护温度55℃,CO 变为高阻态,由外接电阻下拉至低电平,充电控制MOS 管关断停止充电,当电芯温度降到50℃时,CO 变为高电平,充电控制MOS 重新开启;当放电温度高于保护温度75℃,DO 变为低电平,放电MOS 管关断停止放电,同时充电MOS 管也关断禁止充电,当电芯温度降到60℃时,DO 变为高电平,CO 变为高电平,充放电控制MOS 重新开启。

7. 断线保护

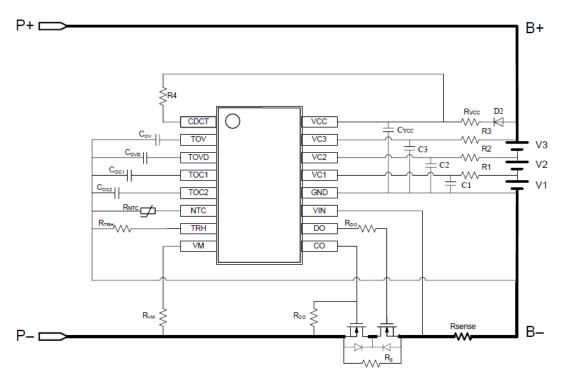
当芯片检测到管脚VC1、VC2、VC3 中任意一根或多根与电芯的连线断开,芯片判断为发生了断线,即将C0 输出高阻态, D0 输出低电平,此保护状态称为断线保护状态。

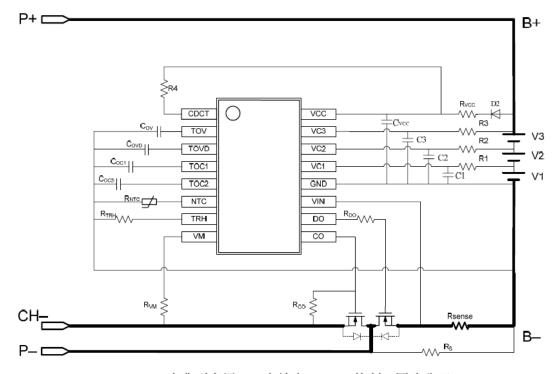
工作时序图


1. 过充电、过放电保护

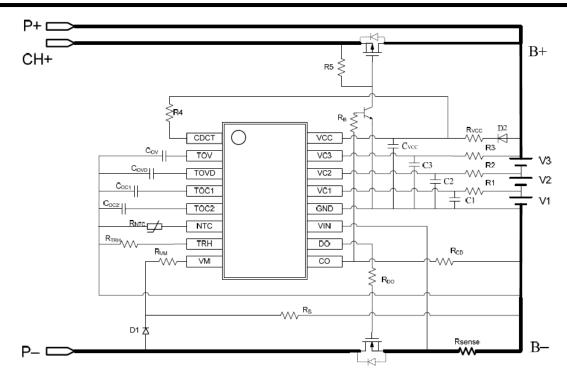
假定为恒流充电, VCHR-为充电器空载时负端电压:

- (1) 通常状态:
- (2) 过充电保护状态;


- (3) 过放电保护状态。
- 2. 放电过电流、短路、充电过电流保护


假定为恒流充电, VCHR-为充电器空载时负端电压:

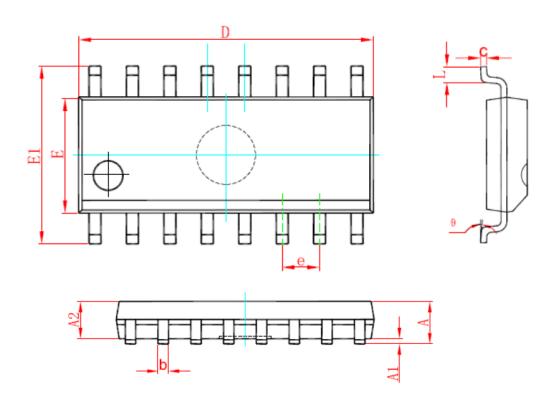
- (1) 通常状态;
- (2) 放电过电流1 保护状态;
- (3) 放电过电流2 保护状态;
- (4) 短路保护状态;
- (5) 充电过电流保护状态。


应用电路

3 串典型应用——充放电 NMOS 控制,回路共用

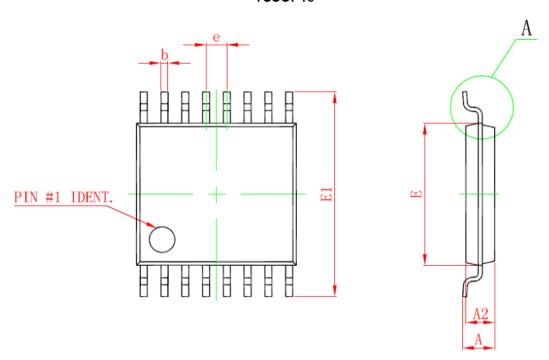
3 串典型应用——充放电 NMOS 控制,回路分开

3 串应用——充电 PMOS, 放电 NMOS 控制


备注: 充电PMOS 控制,放电NMOS 控制应用电路中,VM 端增加二极管D1,充放电过温保护为同一个温度。

电阻、电容推荐值如下:

器件标号	典型值	范围		单位
R1、R2、R3	1000	100 ~	1000	Ω
RVCC	1000	100 ~	1000	Ω
R4	1	0.1~	0.5	ΜΩ
RB、R5、RCD	4.7	1-1	10	МΩ
RNTC	10			kΩ
RTRH	7			kΩ
RVM	220	10-500		kΩ
RCO 、RS	10	5~15		ΜΩ
RDO	2	0~10		kΩ
Rsense	5	1 ~ 20		mΩ
CVCC	10	10 ~ 100		μF
C1、C2、C3	1.0	0.1~ 10	电容耐	μF
COV, COVD, COC1, COC2	0. 1		压>50V	μF


封装示意图及参数

SOP16
SOP16 PACKAGE OUTLINE DIMENSIONS

6 1 1	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
b	0. 330	0. 510	0.013	0. 020	
С	0. 170	0. 250	0.007	0.010	
D	9. 800	10. 200	0. 386	0. 402	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	

TSSOP16

Symbo1	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
D	4.900	5.100	0.193	0.201	
E	4.300	4.500	0.169	0.177	
b	0.190	0.300	0.007	0. 012	
С	0.090	0.200	0.004	0.008	
E1	6. 250	6.550	0.246	0.258	
A		1.100		0.043	
A2	0.800	1.000	0.031	0. 039	
Al	0.020	0.150	0.001	0. 006	
e	0.65	0, 65 (BSC) 0, 026		(BSC)	
L	0.500	0.700	0.020	0.028	
Н	0.25	(TYP)	0. 01 (TYP)		
θ	1 °	7°	1 °	7°	