

Sigrity 直流分析 (PowerDC) 操作练习

2010-06-21

1. PCB的直流分析

创建新项目

- 创建一个新的仿真文件(New Workspace);
- 界面中将出现一个空白的4层板

Workspace View Help	
New Workspace	

SIGRITY

加载布线文件

- 确保当前流程为IR Drop Analysis
- 点击Load a New/Different Layout把 Lab文件中的 IR_PCB.spd布线文件加 载进来
- 这是一个4层的背板,板上有1个连接
 器和3个子板插槽

Workflow	: PowerDC		- 3	×		
IR Drop) Analysis		ŀ	^		
Resista	nce Measurement		1			
Generate Resistance Network Model						
Thermal						
IR Drop Analysis						
Initial	Setup	٢		≡		
Lo	ad a New/Different Layout					
Cł	ieck Stackup					
Vi	a Plating Thickness Setup					
Se	elect Pwr/Gnd Nets					

- 点击Check Stackup,检查导入的封装 或PCB的叠层信息是否正确
- 界面中将出现Stackup窗口
- 检查1: Layer Name这1列,看叠层的 分布是否准确无误
- 检查2: Thickness这1列,看每一层的 厚度是否准确无误

Work	kflow: PowerDC	×				
IR	Drop Analysis	^				
Re	esistance Measurement					
Ge	Generate Resistance Network Model					
Thermal						
IR Drop Analysis 🔹 🛸						
Ini	itial Setup 📀					
	Load a New/Different Layout					
- [Check Stackup					
	Via Plating Thickness Setup					
	Select Pwr/Gnd Nets					

🚸 Stackup		(2)							□ ×
1 T		Thisland		Calan	The set of shields of	Change Manua	Denne ittiniter		Frank File
Layer Icon	Layer Name	Thickness(mm)	Conductivity(S/M)	Color	Tracevvictn(Shape Name	Permittivity	Loss Langent	From File
	Signal\$TOP	4.1021e-002	3.430000e+007		1.0000e-001				
	Medium\$4	3.5471e-001					4.5000	0.0000	
	Signal\$GND1	8.6868e-002	3.430000e+007		1.0000e-001	Shape\$GND			
	Medium\$10	7.2390e-002					4.5000	0.0000	
	Signal\$POWER	5.7912e-002	3.430000e+007		1.0000e-001	Shape\$POWER2			
	Medium\$12	1.2065e-001					4.5000	0.0000	
	Signal\$GND2	8.6868e-002	3.430000e+007		1.0000e-001	Shape\$GND1			

检查叠层2

- 检查3: Conductivity这1列,看金属材 料的导电率是否准确无误
- 检查4:可以在Stackup窗口右下角的 Unit下拉菜单中选择不同的显示单位, 如可以切换为mil来显示
- 因为是直流DC分析,因此交流AC分析 中必须检查的介电常数和介质损耗这 里可以不管

🚸 Stackup			3						×□
Layer Icon	Layer Name	Thickness(mm)	Conductivity(S/m)	Color	TraceWidth(Shape Name	Permittivity	Loss Tangent	From File
	Signal\$TOP	4.1021e-002	3.430000e+007		1.0000e-001				
	Medium\$4	3.5471e-001					4.5000	0.0000	
	Signal\$GND1	8.6868e-002	3.430000e+007		1.0000e-001	Shape\$GND			
	Medium\$10	7.2390e-002					4.5000	0.0000	
	Signal\$POWER	5.7912e-002	3.430000e+007		1.0000e-001	Shape\$POWER2			
	Medium\$12	1.2065e-001					4.5000	0.0000	
	Signal\$GND2	8.6868e-002	3.430000e+007		1.0000e-001	Shape\$GND1			

设置过孔镀层厚度1

- 点击Via Plating Thickness Setup,设置过孔的镀层厚度
- 界面中将出现Padstack Library窗口
- 检查1:对于pf-d030p-041-c这类过 孔,他们的Plating thickness属性为 Solid Via,表示过孔为实心的

• / > •			
Workflow: PowerDC			×
IR Drop Analysis			^
Resistance Measurement			
Generate Resistance Network Model			
Thermal			
IR Drop Analysis		≳	
Initial Setup	٢		
Load a New/Different Layout			
Check Stackup			
Via Plating Thickness Setup			
Select Pwr/GSet up via plating thickness.			

SIGRITY

设置过孔镀层厚度2

Outer radius :	0.381		
Plating thickness:	0.2	Solid Via	
Conductivity:	5.800000e+007	✓ Use default	: conductivity
Select material:	•		OK Cancel

- 在右下角的参数设置窗口中,Outer radius表示过孔Drill外壁的厚度
- 改变镀层厚度Plating thickness,在右边空格中输入0.2,表示该过孔的实际镀层厚度为0.2mm,然后点击OK即可
- 导电率Conductivity,默认的过孔导电率为5.8e+7(S/m)
- 选择材料Select material,可导入一个txt格式的材料文件,其 中可包含频变的导电率,介电常数或介质损耗,从而使仿真精 度更高

选择电源/地网络

- 点击Select Pwr/Gnd Nets,选择要仿 真的电源网络和地网络
- 界面的右边将出现Net Manager网络管 理器窗口
- 激活电源网络,把他们放在 PowerNets 的分类中;激活地网络,把他们放在 GroundNets的分类中
- 如果封装或PCB翻译完之后电源地网络 属性为普通的信号分类,没有位于上述 PowerNets和GroundNets中,则必须通 过点击右键的Assign To PowerNets或 Assign To GroundNets将网络正确分类

Work	(flow: PowerDC			x		
IR	Drop Analysis			^		
Re	sistance Measurement					
Generate Resistance Network Model						
Th	ermal					
IR Drop Analysis						
Ini	tial Setup					
	Load a New/Different Layout					
	Check Stackup					
	Via Plating Thickness Setup	_				
	Select Pwr/Gnd Nets					

- 点击Setup VRMs,设置板上的供电模块VRM
- 界面上将出现设置向导 Wizard
- 在接下来出现的2个对话框中 依次按照默认选项,按Next

Ο	Create by	usina existin	a circuits defin	ed in the lavout fil	e
\sim	Create by	aong okoan	ig circaito acriri	ica in aic iayoachi	·••

Vorkflow: PowerDC			×
IR Drop Analysis		[^
Resistance Measurement		[
Generate Resistance Network Model			
Thermal			
R Drop Analysis		*	
Initial Setup	٢		
Load a New/Different Layout			=
Check Stackup			
Via Plating Thickness Setup			
Select Pwr/Gnd Nets			
Voltage Drop Analysis Setup	٢		
Setup VRMs			
Setup Sinks			
Setup Interconnects			

\rightarrow	Power Net:	PowerNets	•
	Ground Net:	GND	•

- 在接下来的窗口中选择 VRM_v0,然后点击Next
- 然后在设置标称电压Nominal Voltage为1.8V,点击Next
- 最后在生成的VRM电路中按 Finish,这样1.8v VRM就生成 好了

Select one or more circuits from the list and click Next.

Next

- 此时在主界面上将看到粉红 色的VRM电路
- 在界面的下方会看到VRM Name, Nominal Voltage, Output Tolerance以及电路的 节点连接关系,所有这些设 置都可以手动直接编辑
- 如果板上找不到现成的VRM 器件,此时就需要手动把 VRM连接到主界面的版图文 件中

Volta	ge Drop Analysis	Setup -> Setup VRMs ->	- Setup VRMs				
Setu	p VRMs Setup	Multi-phase VRMs					
	VRM Name	Nominal Voltage (V)	Output Tolerance (%)	ĒC		Node Name	Net
$\mathbf{\nabla}$	VRM_VRM	1.8	0		Node7422!!B01::V1_8_	Node7422!!B01	V1
🗹 🏷					•• P Node7425!!B02::V1_8_f	Node7425!!B02	V1
					-• P Node7428!!B03::V1_8_	Node7428!!B03	V1
					-• P Node7431!!B04::V1_8_	Node7431!!B04	V1
						151	

- 点击Setup Sinks,设置板上 的耗电模块Sink
- 界面上将出现设置向导 Wizard
- 在接下来出现的2个对话框中 依次按照默认选项,按Next

• Create by using existing circuits defined in the layout file

Workflow: PowerDC	×
IR Drop Analysis	^
Resistance Measurement	
Generate Resistance Network Model	
Thermal	
IR Drop Analysis	*
Initial Setup 📀	
Load a New/Different Layout	=
Check Stackup	
Via Plating Thickness Setup	
Select Pwr/Gnd Nets	
Voltage Drop Analysis Setup 🔗	
Setup VRMs	
Setup Sinks	
Setup Interconnects	
Other	

Select Power and Ground Nets

O Create manually
Power Net:
PowerNets

PowerNets

Next
Next
Next

- 在接下来的窗口中选择 DIMM_CONN2,这样它下面 的3个接插件J8,J1和J14都被 选中了,然后点击Next
- 然后按照如下窗口中的参数逐 一设置,点击Next
- 最后在生成的Sink电路中按 Finish,这样1.8v Sink就生成 好了

Select one or more circuits from the list and click Next.

The auto-generated Sinks are list below.

	Sink Name	Model	Nominal Voltage	Input Tolerance (F
\square	SINK_J8_V1	Equal Current	1.8	3	A
\checkmark	SINK_J1_V1	Equal Current	1.8	3	A
\checkmark	SINK_J14_V1	Equal Current	1.8	3	A

Next

- Shift选中界面下方的3个 Sink,此时在主界面上将看到 粉红色的Sink电路
- 在界面的下方会看到Sink Name, Model, Nominal Voltage, Input Tolerance, P/F Mode, Current以及电路 的节点连接关系,所有这些设 置都可以手动直接编辑
- 如果板上找不到现成的Sink器
 件,此时就需要手动把Sink连
 接到主界面的版图文件中

Volta	/oltage Drop Analysis Setup -> Setup Sinks								
	Sink Name	Model	Nominal Voltage	Input Tolerance	P/F Mode	Current (A) Current M	Napping File	G DIMM_CONN238.1 (V1_8_	Node Name
\square	SINK_J8_V1	Equal Current	1.8	3	Average	5		Node12076!!A272::V1_	Node12076!!A2
	SINK_J1_V1	Equal Current	1.8	3	Average	5		• P Node12079!!A271::V1_	Node12079!!A2
	SINK_J14_V	Equal Current	1.8	3	Average	5		• P Node12096!!A264::V1_	Node12096!!A2
2)							••••••••••••••••••••••••••••••••••••••	Node12099!!A2
	,						6	P Node12116U∆258…V1 ;	Node12033MAZ

Model的含义

- Equal Voltage是指Sink上所有的电源管脚和地管脚上的电压都相等。
- Equal Current是指Sink上所有的电源管脚和地管脚上的电流都相等。一旦选择了Equal Current就必须设置P/F
 Mode,是Average还是Worst,其具体含义见下页。此模型最常用。
- Unequal Current是指Sink上所有的电源管脚和地管脚上的 电流都不等。一旦选择了Unequal Current就必须在 Current Mapping File中指定包含芯片各管脚的电流文件。 此模型用的较少。

P/F Mode的含义

- P/F Mode是指当使用Equal/Unequal Current Mode的时候,用来计算Sink上的<u>实际</u>电压的方法,其结果可与 Pass/Fail(通过/不通过)的标准相比较。
- WORST(最差): Pass/Fail 基于电源管脚的<u>最大</u>电压与 地管脚的<u>最小</u>电压之间的差值。
- AVERAGE(平均): Pass/Fail 基于所有电源管脚的<u>平均</u>电压与所有地管脚的<u>平均</u>电压之间的差值。

Current的设置

Current是指器件实际消耗的电流,此为必 填项。

- 该电流值既可以是平均值也可以是最大值。
- 如果板上有多个Sink器件,那么该电流值既可以相等,也可以不等。

设置互连器件

- 对于该培训跳过Setup Interconnect 的 设置
- 该步骤一般用来设置磁珠、电感、电阻 等互连器件
- 一般来说, interconnect可以通过以下3
 种方式来设:
- 1. 自动从circuit linkage manager中产生
 - 非0Ω的电阻,电感等
- 2. 利用 interconnect 向导,通过布线文件 中定义的现有电路完成
 - 0Ω 的电阻
- 3. 利用 interconnect 向导,用户手动创建
 - Bus bars
 - 器件的电压感应管脚

Workflow: PowerDC	×
Generate Resistance Network Model	^
Thermal	
IR Drop Analysis	*
Initial Setup 📀	
Load a New/Different Layout	
Check Stackup	
Via Plating Thickness Setup	
Select Pwr/Gnd Nets	
Voltage Drop Analysis Setup 📀	
Setup VRMs	=
Setup Sinks	
Setup Interconnects	
Other	

设置其他参数

- 对于该培训跳过Other 的设置
- 该步骤一般用来设置电压参考点、功耗 显示精细度等
- 电压参考点默认为VRM的负节点
- 如果有多个VRM,则参考点为第一个 VRM的负节点
- 用户也可以在仿真前自己设定任意的 Node节点为整个系统的参考电压零点

Workflow: PowerDC		X
Generate Resistance Network Model		<u>^</u>
Thermal		
IR Drop Analysis	\$	
Initial Setup	٢	
Load a New/Different Layout		
Check Stackup		
Via Plating Thickness Setup		
Select Pwr/Gnd Nets		
Voltage Drop Analysis Setup	\bigcirc	
Setup VRMs		\equiv
Setup Sinks		
Setup Interconnects		
Other		

Voltage Drop Analysis Setup -> Other						
Voltage Reference Node:			Remove			
Power Loss Plot Resolution (mm):	1.445049		Apply]		

保存项目文件

- 在设置完VRM和Sink器件 后,跳过Constraints Setup 和Parameter Sweeping Setup这2个步骤,这2个步 骤为可选项
- 点击主菜单中的Save All, 将workspace中的所有参数 设置保存为*IR_PCB.xml*
- 建议用户在设置过程中要经常保存,以免丢失信息

- 保存完项目后,回到流程菜单的顶部,点击R Drop Analysis进行直流压降分析
- 点击流程中的 Start simulation, 或主菜单中的运行按钮,开始仿真

W	/orkflow: PowerDC
~	IR Drop Analysis
	Resistance Measurement
	Generate Resistance Network Model
	Thermal
I	R Drop Analysis *
	Initial Setup 📀
	Load a New/Different Layout
	Check Stackup
	Via Plating Thickness Setup
	Select Pwr/Gnd Nets

- 仿真完成后, PowerDC自动打开Voltage & Current Tables
- 在界面下方有一系列的结果,可以进入每个结果按钮检查结果,有些结果必须 在设置了constrains 后才可以得到
- 当前结果为VRM Voltage结果,另外Sink Voltage结果也很常用,而其他结果本 培训将不一一介绍,可参考PowerDC_UG.pdf

Show Results -> VRM Voltage

 VRM Voltage
 Sink Voltage
 Interconnect Current
 Probes Measurements
 Global Via Current

Global Via Current | Global Via Current Density | Specific Via Current | Global Plane Current Density |

Specific Plane Current Density | Trace Current Density | Zero Current Via and Trace |

Voltage电压

- Show Results>Voltage & Current Tables>VRM Voltage中包含有仿真得到的VRM结果
- Actual Current是指VRM上实际输出的电流,大 小等于各个Sink抽取的电流之和
- ■其他信息均为之前的输入信息

Show Results -> VRM Voltage				
VRM Voltage Sink Voltage Interc	onnect Current Probes Measure	ments Global Via Current	Global Via Current Density	Specific Via Current Global
VRM Name	Output Nominal Voltage (V)	Output Tolerance (%)	Actual Current (A)	
VRM_VRM_V1_8_MEM_GND	1.8	0	15	

Sink电压

- 点击Sink Voltage, 切换到Sink的仿真结果
- Actual Voltage为各个Sink上实际的直流电压,是根据VRM的电压以及 Sink上抽取的电流,解电路方程组求得的
- 绿色的对勾表示:所有3个Sink的压降都满足要求
- Margin是指各个Sink上实际的电压容限,计算公式如下 MH = (SinkNominal + SinkTolerance) – (SinkActualSimResult + VRM tolerance) ML = – (SinkNominal – SinkTolerance) + (SinkActualSimResult – VRM tolerance) Margin = min (MH, ML)
- 检查SINK_J8管脚上的电压电流,可以发现:每个pin上的电流相等,电压算出来各不相同。符合之前假设的Equal Current模型

Show Results -> Sink Voltage							
VRM Voltage	VRM Voltage Sink Voltage Interconnect Current Probes Measurements Global Via Current Global Via Current Density						
Sink Name	Model		Nominal Voltage	Input Tolerance	Actual Voltage (V)	Margin (V)	
SINK_J8	Equal Currer	nt	1.8	3	1.79541 🗸	0.0494111	
SINK_J1	Equal Currer	nt	1.8	3	1.79389 🗸	0.0478859	
SINK_J14	Equal Currer	nt	1.8	3	1.79819 🗸	0.0521939	

- 先查看电压分布图,点击Voltage Distribution Plot
- 该步骤一般需要较长的时间,因为工具需要把大量的3维仿真结果全部映射到封装或PCB板的实际物理结构上
- 电压、电流彩图结果的切换既可以在仿真流程中进行,也可以在界面右侧的Distribution菜单中进行

SIGR

SIGRITY

电压分布图1 (Voltage)

- 电压分布在每一层的颜色都会按照最小值和最大值的区间自动调节
- 注意: 电压在地平面和电源平面上的不同分布情况

电压分布图2 (Voltage)

Optimal Sense Locations

Power/Ground Pair

Optimal Sense Locations

🗹 Power/Ground Pair

SIGRITY

电压分布图3 (Voltage)

■ 电压热点 (Hot Spot)

Show Hotspots

<u></u>	00000 00000 00000 00000

	00000
••••••	

Show Hotspots

SIGRITY

电流密度分布图 (Plane Current Density)

■ 平面电流密度(POWER平面)

矢量模式

SIGRITY

(Plane Power Density)

■ 平面功率密度(POWER平面)

	60 80 100 120 140	160 180 200 220 240	
			0.7203679
		6 4 4 4 4 4 4 4 4 4	
B. B. H. H.	and the second	118-111	
			0.6
najnajnajnaj		na na na na	
			0.5
111111	*************	111111	
441111111		******	0.4
84481111	************		
-0-0.01.0000			
			0.3
18			
			0.0
*****	• • • • • • • • • • • •		0.2
			0.1
			8.104843e-7
	III		2

功耗分布图 (Power Loss)

■ 功耗 (POWER平面)

SIGRITY

过孔电流分布图 (Via Current)

■ 过孔电流(TOP平面)

1 ⁰ 1 ²⁰ 1 ⁴⁰ 1 ⁶⁰ .		40 160 180 200 220	²⁴⁰ ²¹	693.0337mA
8. 	8. 27			600mA
$N(N_{1}N) = 0$	A1,41,41,41,8			500mA
				400mA
				300mA
46° - 16		• 10 • 10 • • • • • • • • • • • • • • • • • • •		200mA
				100mA
			>	= 13.17334mA

保存仿真结果和彩图结果

- 保存仿真结果: 主菜单 Workspace > Simulation Results > Save
- 保存彩图结果:界面右侧 Distribution菜单,右键点击 present distribution 然后选择 save all

仿真结果

彩图结果

2. PKG的直流分析

加载布线文件

- 点击主菜单的New,新建一个 Workspace
- 确保当前流程为IR Drop Analysis
- 点击Load a New/Different Layout把 Lab文件中的 IR_Package.spd布线文 件加载进来
- 这是一个7层的BGA封装

Work	(flow: PowerDC		×
IR	Drop Analysis		~
Re	esistance Measurement		
Ge	enerate Resistance Network Model		
Th	hermal		
IR Drop Analysis 🔗			8
Ini	tial Setup	•) =
	Load a New/Different Layout		
	Check Stackup		
	Via Plating Thickness Setup		
	Select Pwr/Gnd Nets		

检查叠层、镀层、选择网络

- 跳过Check Stackup
- 跳过Via Plating Thickness Setup
- 跳过Select Pwr/Gnd Nets

Work	flow: PowerDC		
IR	Drop Analysis		
Resistance Measurement			
Gei	nerate Resistance Network Model		
Th	ermal		
IR D	rop Analysis	ŝ	
Init	tial Setup		
	Load a New/Different Layout		
	Check Stackup		
	Via Plating Thickness Setup		
	Select Pwr/Gnd Nets		
Voltage Drop Analysis Setup 💿			
	Setup VRMs		
	Setup Sinks		
	Setup Interconnects		
	Other		

×

~

۲

设置供电模块1

Workflow: PowerDC

IR Drop Analysis

IR Drop Analysis

Initial Setup

Thermal

Resistance Measurement

Generate Resistance Network Model

Next

- 点击Setup VRMs,设置板上的供电模块VRM
- 界面上将出现设置向导 Wizard

Next

Load a New/Different Layout Check Stackup 在接下来出现的2个对话框中 依次按照默认选项,按Next Via Plating Thickness Setup Select Pwr/Gnd Nets Voltage Drop Analysis Setup Setup VRMs Setup Sinks Setup Interconnects Other Select Power and Ground Nets • Create by using existing circuits defined in the layout file Power Net: **PowerNets** Ŧ OCreate manually Ground Net: GND Ŧ

- 在接下来的窗口中选择 BGA1,然后点击Next
- 然后在设置标称电压Nominal Voltage为1.8V,点击Next
- 最后在生成的VRM电路中按 Finish,这样1.8v VRM就生成 好了

Next

Voltage Drop Analysis Setup -> Setup VRMs -> Setup VRMs			
Setup VRMs Setup Multi-phase VRMs			
VRM Na	me 🛛 🕺 Nominal Voltage (V) Output Tolerance (%)	
VRM_BG	A1 1.	8 0	

Next

- 点击Setup Sinks,设置板上 的耗电模块Sink
- 界面上将出现设置向导 Wizard
- 在接下来出现的2个对话框中 依次按照默认选项,按Next

• Create by using existing circuits defined in the layout file

Workflow: PowerDC	×
IR Drop Analysis	^
Resistance Measurement	
Generate Resistance Network Model	
Thermal	
IR Drop Analysis	*
Initial Setup 📀	
Load a New/Different Layout	≡
Check Stackup	
Via Plating Thickness Setup	
Select Pwr/Gnd Nets	
Voltage Drop Analysis Setup 🔗	
Setup VRMs	
Setup Sinks	
Setup Interconnects	
Other	

Select Power and Ground Nets

- 在接下来的窗口中选择 DIE1,然后点击Next
- 然后按照如下窗口中的参数逐 一设置,点击Next
- 最后在生成的Sink电路中按 Finish,这样1.8v Sink就生成 好了

Select one or more circuits from the list and click Next.

Next

Finish

Next

保存项目文件

■ 在设置完VRM和Sink器件 后,跳过右图中的加框 部分

 点击主菜单中的Save All,将workspace中的所 有参数设置保存为 *IR_Package.xml*

■ 在弹出的Output窗口中 会出现ERROR信息

Output

ERROR [Open Net]: Net GND contains two or more disconnected sections. ERROR [Open Net]: Net VDDIO contains two or more disconnected sections.

42

改变选项设置,消除ERROR

Options		
File General File Manager Save Options Hotkeys	Change the 'Error Checking' options in PowerDC	
Layout Grid and Unit View Processing	Warning Error	
Trace Error Checking 3D Layout View	Adjacent Nodes	
Quality Simulation (Basic)	Short Circuit	
Set Temperature Treat Pad As Shape Report Mesh Thermal Analysis Thermal Constraints		
Special Handling	Error Checking Result Mark the errors on the layout	

- 为了消除Error,点击Tools>Options>Edit Options...
- 在窗口中点击Options>Error Checking,将Short和Open由默认的 Error状态改为Warning状态,这样后续的仿真才可以继续进行

开始仿真

Workflow: PowerDC

🗸 IR Drop Analysis

Resistance Measurement

Generate Resistance Network Model

Thermal

IR Drop Analysis

Parameter Sweeping Setup			
	Setup Sweeping Parameters		
Simulate 📀			
	Check Errors / warnings		
	Start Simulation		
	Report		

- 选择仿真类型,点击IR Drop Analysis
- 点击Simulate>Start Simulation,开始执行直流压降分析

SIGRITY

创建仿真报告1

	Options	-	×
Simulate Check Errors / warnings Start Simulation Report Show Results	File General General File Manager Save Options Hotkeys Layout Grid and Unit View Processing Trace Error Checking	Change the 'Report' options in PowerDC General Information Report template I\library\template\PowerDC\PowerDC_Report_Template_Default.htm Notes:	
Voltage & Current Tables Voltage Distribution Plot Plane Current Density Plot	Error Checking 3D Layout View Display Quality Simulation (Basic) Automation Result Savings Simulation (Advanced) Set Temperature Treat Pad As Shape Report Mesh Thermal Analysis Thermal Constraints Special Handling	Optional Plots Power Los: Power Density Via Curren Temperaturi Voltage Distribution Plot Display one plot for each power net and one plot for ground ne	

■ 仿真完成后, Report按钮会自动变成深色, 表示Report功能 已经Ready了

■ 点击Report,将打开Options窗口,在窗口中选择框中的选项,以便自动获取各种有用的结果

创建仿真报告2

SIGRITY

PowerDC_Report_Template_Default.htm³

DC Sign-Off Report

Date :19th of June 2010

1 General Information

1.1 Spd File Name and Location

PowerDC Version :10.0.2.06102

File Names and Locations:

3.2 Distribution Plots

3.2.1 Voltage Distribution

3.2.2 Current Distribution

3.1 Result Table

VRM	VRM_BGA1_VDDIO_GND
Nominal Voltage(V)	1.8
Actual Current(A)	5
Sink	SINK_DIE1_VDDIO_GND
Actual Voltage(V)	1.79851
Margin(V)	0.0885115
Fail/Pass	Pass

- 3.2.3 PowerLoss Distribution
- 3.2.4 Power Density Distribution
- 3.2.5 Via Current
- 点击Report后, PowerDC将自动创建DC Sign-Off Report
- 在报告中主要包括一些重要的设置信息,Result Table以及Distribution Plots
- Result Table主要报告了Sink上得到的实际电压, Margin和是否Pass
- Distribution Plots中包括每一层的电压、电流、功耗和功率密度分布图

查看仿真结果

Simulate	
Check Errors / warnings	
Start Simulation	
Report	
Show Results	Save Option 🗙
Voltage & Current Tables	
Voltage Distribution Plot	Save Distribution Plot
Plane Current Density Plot	Save Simulation Result Table
Plane Power Density Plot	
Power Loss Plot	Path: D:\Tool_Training\Training_2010_SH\PowerDC Training_Browse
Via Current Plot	
Switch to Normal Layer View	OK
Save Simulation Result	
Load Simulation Result	

- 除了运用Report自动生成仿真报告外,还可以在Show Results的流程 中手动查看各种图表和Plot彩图,此处不再赘述
- 点击Save Simulation Result,可将仿真结果保存
- 点击Load Simulation Result,可直接加载仿真结果

Key to the Power and Signal Integrity Solution for IC Packages and PCBs