晶丰明源半导体

PWM 调光非隔离降压型 LED 恒流驱动芯片

概述

BP2878 是一款适用于 85Vac~265Vac 全范围输入 电压的非隔离降压型,支持 PWM 调光功能的 LED 恒流电源驱动芯片,PWM 调光深度可达到 1%以下, 能够最大程度优化调光线性度与调光一致性,专 为 PWM 调光无频闪 LED 照明领域的应用而设计。

BP2878适用于Buck降压型电路,通过源极驱动方式驱动外置MOSFET,实现恒流输出。电感电流工作于临界连续模式(BCM),因此功率二极管零电流关断,不存在反向恢复问题。BP2878采用准谐振模式,确保MOSFET开通于电压谷底,有助于实现更高的转换效率,同时抑制电磁干扰(EMI)。

BP2878 芯片内部带有高精度的电流采样电路,同时采用了专利的恒流控制技术,实现高精度的 LED 恒流输出和优异的线电压调整率。芯片工作电流极低以及很少的外围器件,极大的节约了系统成本及体积。

特点

- 专利的数字调光技术
- 专为调光无频闪优化
- 无极调光
- 支持 1%-100% PWM 调光
- 无音频噪声
- 电感电流临界模式
- ±5% LED 输出电流精度
- LED 开路/短路保护
- LED 开路/短路保护
- CS 电阻短路保护
- 芯片供电欠压保护
- 过热调节功能
- 采用 SOP8 封装

应用

- LED 蜡烛灯
- LED 日光灯
- LED 球泡灯
- 其它 LED 照明

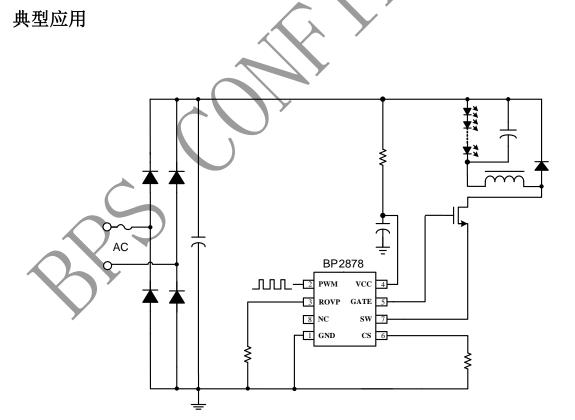


图 1 BP2878 典型应用图

BP2878

PWM 调光非隔离降压型 LED 恒流驱动芯片

定购信息

定购型号	封装	温度范围	包装形式	打印
BP2878	SOP8	-40 ℃到 105 ℃	编带 4,000颗/盘	BP2878 12345CX H1WWX

管脚封装

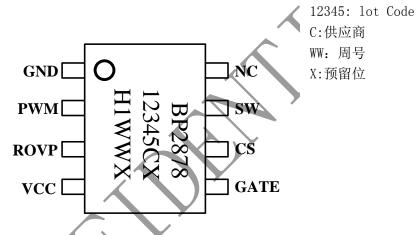


图 2 管脚封装图

管脚描述

管脚号	管脚名称	描述		
1	GND	芯片地		
2	PWM	PWM 调光信号输入端		
3	ROVP	开路保护电压调节端,接电阻到地。电阻越大, 0VP 电压越高		
4	VCC	芯片电源		
5	GATE	外置功率 MOS 管的门极		
6	CS	电流采样脚		
7	SW	源极驱动的输出端,接外置功率 MOS 管的源极		
8	NC	悬空		

晶丰明源半导体 PWM 调光非隔离降压型 LED 恒流驱动芯片

极限参数(注1)

符号	参数	参数范围	单位
Icc_max	VCC引脚最大电源电流	5	mA
GATE	外置功率 MOS 管的门极	-0. 3~17	V
CS	电流采样端	-0.3~6	V
PWM	PWM 调光信号输入端	-0. 3~24	V
ROVP	开路保护电压调节端	-0.3~6	V
SW	芯片源极驱动的输出端	-0.3~24	V
P _{DMAX}	功耗(注 2)	0. 45	W
θ_{JA}	PN结到环境的热阻	145	°C/W
$T_{ m J}$	工作结温范围	-40 to 150	$^{\circ}$
T_{STG}	储存温度范围	-55 to 150	$^{\circ}$
	ESD (注 3)	2	KV

注 1: 最大极限值是指超出该工作范围,芯片有可能损坏。推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

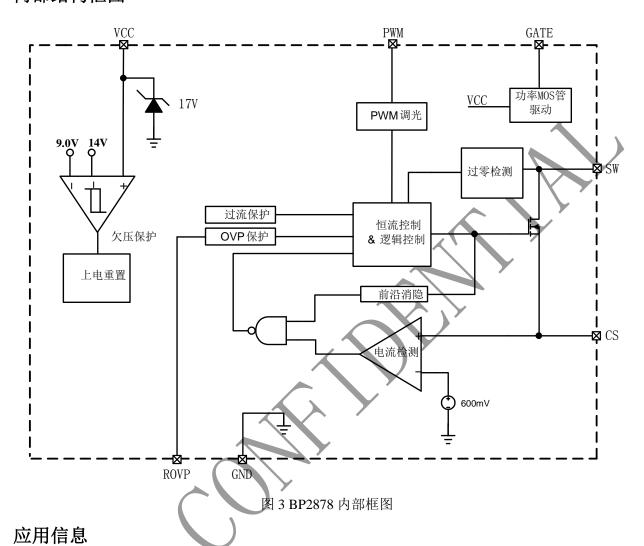
注 2: 温度升高最大功耗一定会减小,这也是由 T_{JMAX} , θ_{JA} ,和环境温度 T_{A} 所决定的。最大允许功耗为 $P_{\text{DMAX}} = (T_{\text{JMAX}} - T_{\text{A}})/\theta_{\text{JA}}$ 或是极限范围给出的数字中比较低的那个值。

注 3: 人体模型, 100pF 电容通过 1.5KΩ 电阻放电。

BP2878

PWM 调光非隔离降压型 LED 恒流驱动芯片

电气参数(注 4, 5) (无特别说明情况下, V_∞ =15 V, T_A =25 °C)


符号	描述	条件	最小值	典型值	最大值	单位
电源电压						
$V_{\text{CC_CLAMP}}$	Vcc 钳位电压	1mA		17. 4		V
$V_{\text{CC_ON}}$	Vcc 启动电压	Vcc 上升		15. 2		V
$V_{\text{CC_UVLO}}$	V∝欠压保护阈值	Vcc 下降		8. 4		V
${ m I}_{ m ST}$	Vcc启动电流	$V_{CC} = V_{CC-ON} - 1V$		230		uA
${ m I}_{ m OP}$	V∝工作电流	F _{OP} =70KHz		330	1	uA
电流采样						
$V_{\text{CS_H}}$	电流检测阈值		588	600	612	mV
$V_{\text{CS_L}}$	电流检测低阈值		.(200	Y	mV
$T_{ ext{\tiny LEB}}$	前沿消隐时间			372		ns
$T_{\mathtt{DELAY}}$	芯片关断延迟			200		ns
过压保护			$\lambda \lambda$,	_	
Tovp	最小退磁时间	ROVP=20k Ω		6		us
V_{ROVP}	ROVP 引脚电压	ROVP=20k Ω	Y	0.72		V
内部时间控制						
T _{ZCD_LEB}	退磁检测消隐时间			2.5		us
$T_{\text{OFF_MAX}}$	最大退磁时间	\		330		us
$T_{\text{ON_MAX}}$	最大开通时间			40		us
源极驱动						
R _{DS_ON}	内部驱动 MOS 导通阻抗	>		1		Ω
PWM 调光			-	•		-
$F_{ exttt{DIM}}$	PWM 调光频率范围		0.2		4	kHz
过热调节	<u> </u>			•		•
T_{REG}	过热调节温度			150		$^{\circ}$
		•		1		

注 4: 典型参数值为 25℃ 下测得的参数标准。

规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

内部结构框图

BP2878 是一款适用于 PWM 调光的 LED 照明恒流驱动芯片, PWM 调光深度可至 1%以下, BP2878 应用于非隔离降压型 LED 驱动电源。采用专利的恒流架构和控制方法, 系统工作于 BCM 模式, 芯片通过源极驱动技术驱动外置功率 MOS 管, 同时采用准谐振工作模式, 确保谷底导通, 通过极少的外围组件可以得到优异的恒流特性, 较高的效率,较好的 EMI 效果,较低的系统成本。

启动

系统上电后,母线电压通过启动电阻对 V_{cc} 电容充电,当 V_{cc} 电压达到芯片开启阈值时,芯片内部控制电路开始工作。BP2878 内置 17V 稳压管,用于钳位 V_{cc} 电压。芯片正常工作时,需要的 V_{cc} 电流极

低, 所以无需辅助绕组供电。

恒流控制,输出电流设置

芯片逐周期检测电感的峰值电流, CS 端连接到内部的峰值电流比较器的输入端, 与内部 600mV 阈值电压进行比较, 当 CS 电压达到内部检测阈值时, 功率管关断。

电感峰值电流的计算公式为:

$$I_{\rm PK} = \frac{600}{R_{\rm CS}} (mA)$$

其中, Rcs 为电流采样电阻阻值。

CS 比较器的输出还包括一个350ns 前沿消隐时间。

PWM 调光非隔离降压型 LED 恒流驱动芯片

LED 输出电流计算公式为:

$$I_{\text{LED}} = \frac{I_{\text{PK}}}{2}$$

其中, IPK是电感的峰值电流。

储能电感

BP2878 工作在电感电流临界模式,当功率管导通时,流过储能电感的电流从零开始上升,导通时间为:

$$t_{\rm on} = \frac{L \times I_{PK}}{V_{IN} - V_{LED}}$$

其中,L 是电感量; I_{PK} 是电感电流的峰值; V_{IN} 是 经整流后的母线电压; V_{LED} 是输出 LED 上的电压。

当功率管关断时,流过储能电感的电流从峰值开始往下降,当电感电流下降到零时,芯片内部逻辑再次将功率管开通。功率管的关断时间为:

$$t_{\rm off} = \frac{L \times I_{PK}}{V_{\rm LED}}$$

储能电感的计算公式为:

$$L = \frac{V_{\text{LED}} \times (V_{\text{IN}} - V_{\text{LED}})}{f \times I_{PK} \times V_{\text{IN}}}$$

其中、f 为系统工作频率。BP2878 的系统工作频率和输入电压成正比关系,设置BP2878 系统工作频率时,选择在输入电压最低时设置系统的最低工作频率,而当输入电压最高时,系统的工作频率也最高。

BP2878 设置了系统的最小退磁时间和最大退磁时间,分别为 5us 和 330us。由 torr的计算公式可知,如果电感量很小时,torr很可能会小于芯片的最小退磁时间,系统就会进入电感电流断续模式,LED

输出电流会背离设计值;而当电感量很大时,toff 又可能会超出芯片的最大退磁时间,这时系统就 会进入电感电流连续模式,输出 LED 电流同样也 会背离设计值。所以选择合适的电感值很重要。

过压保护电阻设置

开路保护电压可以通过ROVP 引脚电阻来设置, ROVP 引脚输出电流约为36uA。

当LED 开路时,输出电压逐渐上升,退磁时间变短。因此可以根据需要设定的开路保护电压,来计算退磁时间Tovp。

$$Tovp \approx \frac{L \times Vcs}{Rcs \times Vovp}$$

其中, Vcs 是CS 关断阈值 (0.6V), Vovp 是需要设定的过压保护点

然后根据 Tovp 时间来计算 Rovp 的电阻值,公式 如下:

$$R_{OVP} \approx \frac{120}{T_{OVP}} (K\Omega)$$

其中, Tovp 单位为uS。

保护功能

BP2878 内置多种保护功能,包括 LED 开路/短路保护,CS 电阻短路保护,V $_{cc}$ 欠压保护,芯片温度过热调节等。当输出 LED 开路时,系统会触发过压保护逻辑并停止开关工作。系统进入开路保护状态后,V $_{cc}$ 电压开始下降;当 V $_{cc}$ 到达欠压保护阈值时,系统将重启。同时系统不断的检测负载状态,如果故障解除,系统会重新开始正常工作。

当 LED 短路时,系统工作在 3KHz 低频,所以功耗 很低。当有些异常的情况发生时,比如 CS 采样电 阻短路或者变压器饱和,芯片内部的快速探测电 路会触发保护逻辑,系统马上停止开关工作。同 时系统不断的检测负载状态,如果故障解除,系 统会重新开始正常工作。

PWM 调光

BP2878

晶丰明源半导体

PWM 调光非隔离降压型 LED 恒流驱动芯片

BP2878 支持 200Hz—4KHz PWM 信号调光, LED 平均电流将根据 PWM 占空比从 0%—100%变化。

过温调节功能

BP2878 具有过热调节功能,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定的过热调节温度值为150℃。

减小功率环路的面积,如功率电感、功率管、母 线电容的环路面积,以及功率电感、续流二极管、 输出电容的环路面积,以减小 EMI 辐射。

GATE 引脚

芯片 GATE 引脚尽量靠近外置功率 MOS 管的 GATE 脚。

PCB 设计

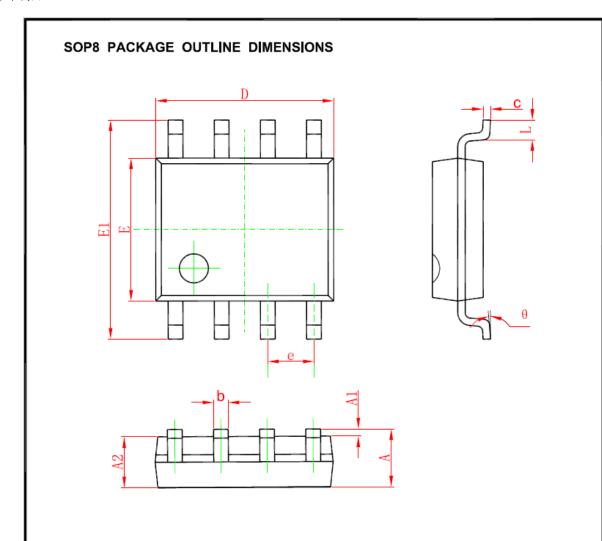
在设计 BP2878 PCB 时,需要遵循以下指南: 旁路电容

 V_{cc} 的旁路电容需要紧靠芯片 V_{cc} 和 GND 引脚。

地线

电流采样电阻的功率地线尽可能短,且要和芯片的地线及其它小信号的地线分头接到母线电容的地端。

Rovp 电阻


开路保护电压设置电阻需要尽量靠近芯片 ROVP 引脚

功率环路的面积

封装信息

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A 1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
b	0. 330	0. 510	0.013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
E	3.800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	