

2010/7/5改版

铝电容器寿命计算式

http://www.chemi-con.co.jp

上海贵弥功贸易有限公司/NIPPON CHEMI-CON CORPORATION

寿命计算式

· A) DC电压加载保证品

贴片型:全般

引钱型:

SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/

SME-BP/KME-BP/LLA

· B)纹波电流加载保证品

引钱型:上述系列(A)以外

基板自立型:全般

螺丝端子型:电压315V以下

- · C)螺丝端子型(电压350V以上)
- · D)导电性高分子电容器

A) DC加载保证品

$$Lx = Lo \times 2^{\frac{Tx - To}{10}} \times 2^{\frac{-\Delta T}{5}}$$

B) 纹波电流加载保证品

$$Lx = Lo \times 2^{\frac{Tx - To}{10}} \times 2^{\frac{5 - \Delta T}{5}}$$

Lx (hrs):推定寿命

Lo (hrs):最大温度时候,保证寿命

Tx (℃):最大可能周围温度

To (℃):实际使用周围温度

△T (°C):纹波电流发热温度

C-1) 发热温度≦25℃

$$Lx = Lo \times 2^{\frac{To + 5 - Tx - \Delta T}{10}} \times \left(\frac{V_2}{V_1}\right)^{4.4}$$

Lx (hrs):推定寿命

Lo (hrs):最大温度时候,保证寿命

To (℃):最大可能周围温度

Tx (℃):实际使用周围温度

△T (℃):纹波电流发热温度

 $V_1(V)$:实际使用电压

V₂(V):产品电压

*但是, 最大(V₂/V₁)是"1.25".

C-2) 发热温度>25℃

C-2-a) 频率:120Hz

$$Lx = Lo \times 2^{\frac{To + 5 - Tx - 25}{10}} \times 2^{\frac{25 - \Delta T}{5}} \times \left(\frac{V_2}{V_1}\right)^{4.4}$$

Lx (hrs):推定寿命

Lo (hrs):最大温度时候,保证寿命

To (℃):最大可能周围温度

Tx (℃):实际使用周围温度

△T (℃):纹波电流发热温度

 $V_1(V)$:实际使用电压

V₂(V):产品电压

*但是, 最大(V₂/V₁)是"1.25".

C-2) 发热温度>25℃

C-2-b) 频率:300Hz

$$Lx = Lo \times 2^{\frac{To + 5 - Tx - 25}{10}} \times 2^{\frac{25 - \Delta T}{7}} \times \left(\frac{V_2}{V_1}\right)^{4.4}$$

Lx (hrs):推定寿命

Lo (hrs):最大温度时候,保证寿命

To (℃):最大可能周围温度

Tx (℃):实际使用周围温度

△T (℃):微波电流发热温度

 $V_1(V)$:实际使用电压

V₂(V):产品电压

*但是, 最大的(V₂/V₁)是"1.25".

C-2) 发热温度>25℃

C-2-c) 频率:1kHz以上

$$Lx = Lo \times 2^{\frac{To + 5 - Tx - \Delta T}{10}} \times \left(\frac{V_2}{V_1}\right)^{4.4}$$

Lx (hrs):推定寿命

Lo (hrs):最大温度时候,保证寿命

To (℃):最大可能周围温度

Tx (℃):实际使用周围温度

△T (℃):纹波电流发热温度

 $V_1(V)$:实际使用电压

V₂(V):产品电压

*但是, 最大的(V₂/V₁)是"1.25".

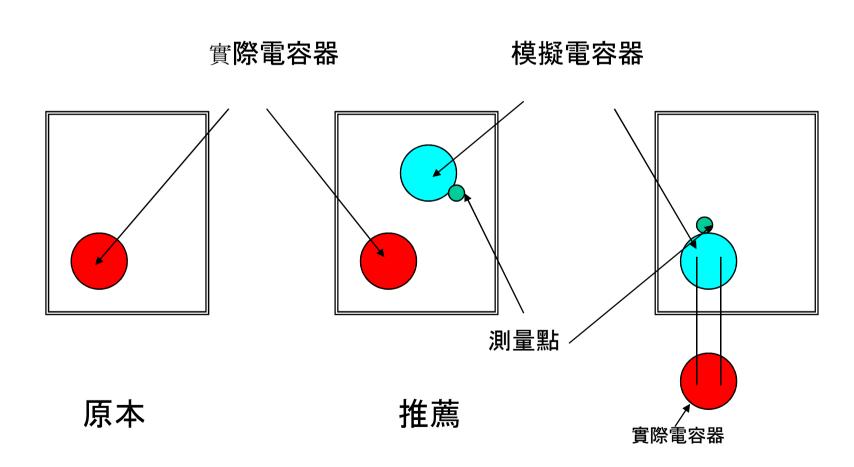
D)导电性高分子电容器

$$Lx = Le \times 2^{\frac{To - Tx - \Delta Tx}{10}}$$

Lx (hrs):推定寿命

Le (hrs):推算寿命

To (℃):最大可能周围温度


Tx (℃):实际使用周围温度

△Tx (℃):纹波电流发热温度

贴片型	PXA/PXE/PXF/PXM/PXK	PXS	PXH
105度	15,000hrs(F45/F46:10,000hrs)	20,000hrs	-
125度	-	-	5,000hrs
引线型	PS/PSA/PSC/PSL	PSE/PSF/PSK	
105度	15,000hrs	20,000hrs	

取得周围温度方法

取得纹波发热方法

计算的三种方法

- 1. 单元中心温度测量
- 2. 表面温度测量
- 3. 纹波电流计算
- 4. 导电性高分子电容器

1. 单元中心温度测量

△ Tx=单元中心温度 - 周围温度

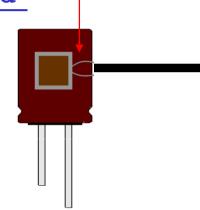
將熱電偶插入電容器裡面並把它密封起來

优点:

比較準確

<u>缺点:</u>

需要額外工作樣品 只能在測量時使用


2.表面温度测量

热电偶

ΔTx=(表面温度 - 周围温度)×系数 α

优点: 演算的結果較接近實際測量值

缺点: 仍然有額外工作設定測量

系数 α

ΦD (mm)	5 - 8	6.3	8	10	12.5	16	18	22	25. 4
Factor α	1.1	1. 1	1. 1	1. 15	1.2	1. 25	1. 3	1. 35	1.4
ΦD (mm)	30	35	40	50	63.5	76	89	100	_
Factor α	1.5	1.65	1.75	1.9	2. 2	2.5	2.8	3. 1	_

3.纹波电流发热计算

$$\Delta Tx = \left(\frac{Ix}{Io}\right)^2 \times \Delta To$$

Io(Arms): 实际纹波电流
Io(Arms): 额定纹波电流

△Tx(ℂ): 纹波电流发热温度

 $\Delta To = 5$

贴片型/引线型/基板自立型:最高温度105度,125度系列

螺丝端子型:全般

 $\Delta To = 10$

贴片型/引线型/基板自立型: 最高温度85度

优点:更加容易取得結果

缺点:產品實際上是概略的估計

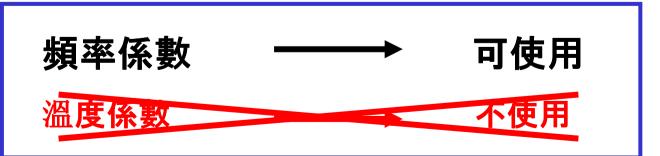
4. 导电性高分子电容器

$$\Delta Tx = \left(\frac{Ix}{Io}\right)^2 \times 20$$

Io(Arms): 实际纹波电流

Io(Arms): 额定纹波电流

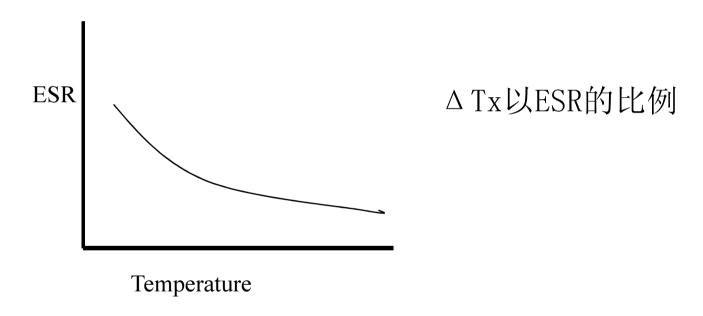
△Tx(℃): 纹波电流发热温度


注意!:计算方法

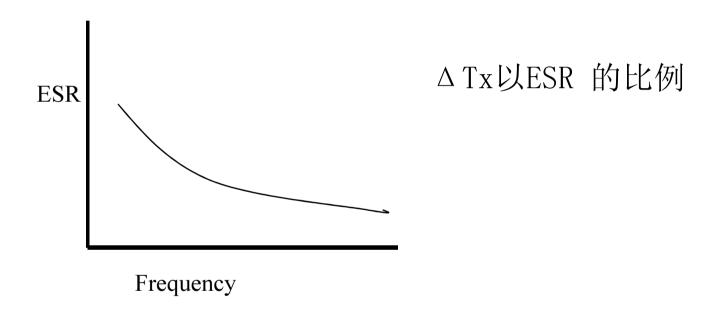
Δ Tx=(实际纹波电流/额定纹波电流)2* Δ To

Good!

 $\Delta Tx = [实际纹波电流/(额定纹电流*頻率系数)]^2 * \Delta To$


No

不必需要乘上温度


基本概念:一個熱上升應該是在一個情況下

ΔTx 如果周围温度低則ESR大

需要频率系数

這好處是顧客乘上使用溫度得到更低的 Δ Tx!

Thank you