NCL30288

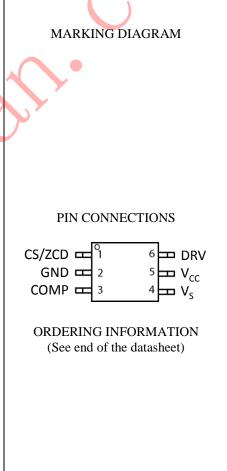
Product Preview

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting

The NCL30288 is a compact driver for power-factor corrected flyback and non-isolated buck-boost and SEPIC converters. The controller operates in a quasi-resonant mode to provide optimal efficiency, and embeds a proprietary control method which allows the LED current to be tightly regulated from the primary side, thus eliminating the need for a secondary-side feedback circuitry and for an optocoupler.

Housed in a TSOP-6 package, the device is highly integrated with a minimum number of external components. A robust suite of safety protection is built in to simplify the design. This device is specifically intended for very compact space efficient designs.

Features


- Quasi-resonant peak current-mode control operation
- Constant current control with primary side feedback
- Tight LED constant current regulation of +/-2% typical
- Near-Unity Power Factor (>0.95 typically)
- Optimized for line wide-range applications
- Line Feedforward for enhanced regulation accuracy
- Low start-up current (10 µA typ.)
- Wide V_{cc} range
- 300 mA / 500 mA Totem Pole Driver with 12 V Gate Clamp
- Robust Protection Features
 - OVP on V_{CC}
 - Programmable Over Voltage / LED Open Circuit Protection
 - Cycle by cycle peak current limit
 - Winding Short Circuit Protection
 - Secondary Diode Short Protection
 - Output Short Circuit Protection
 - Thermal Shutdown
 - V_{cc} undervoltage lockout
 - Brown-Out Detection
- Pb-Free, Halide-Free MSL1 Product

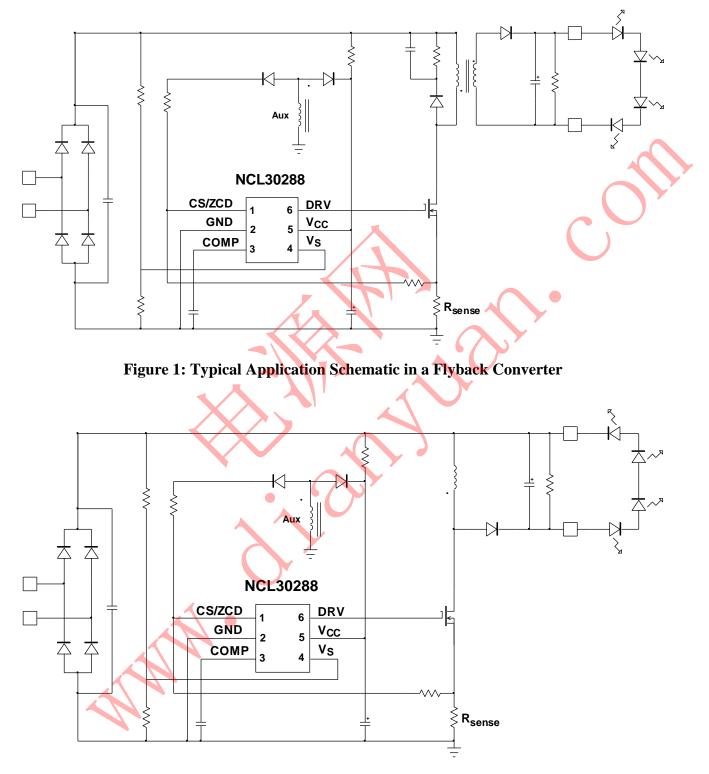
Typical Applications

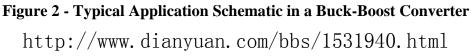
- Integral LED Bulbs and Tubes
- LED Light Engines
- LED Drivers / Power Supplies

http://www.dianyuan.com/bbs/1531940.html

ON Semiconductor Engineering Data Sheet – Confidential Proprietary

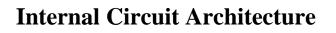
ON Semiconductor

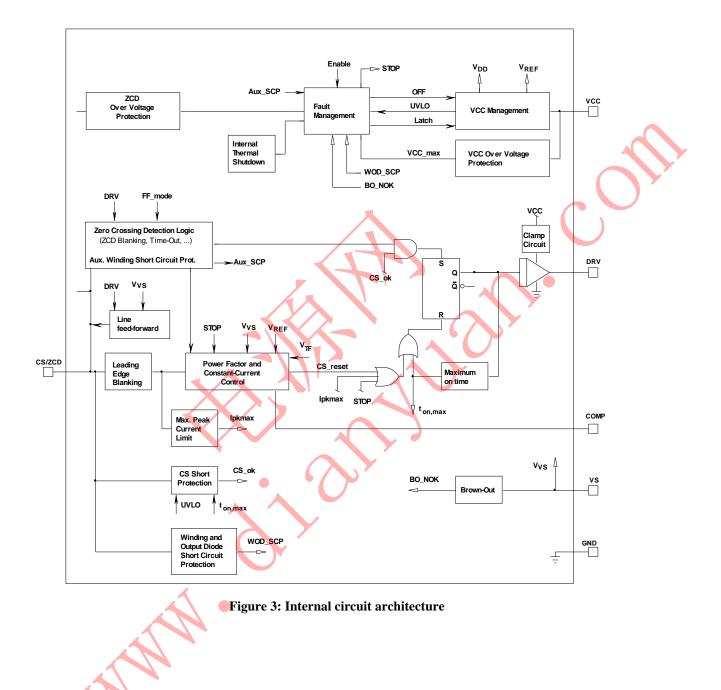

Technical Datasheet Template


OUASI-RESONANT PWM

CONTROLLER FOR LED

DRIVERS





Pin Function Description

Pin N °	Pin Name	Function	Pin Description
1	CS/ZCD	Current Sense and Zero Current Detection	This multi-function pin is designed to monitor the primary peak current for protection and light control and the auxiliary winding voltage for zero current detection
2	GND	-	Controller ground pin.
3	COMP	Filtering Capacitor	This pin receives a filtering capacitor for power factor correction. Typical values ranges from $0.47 - 4.70 \ \mu F$
4	Vs	Input Voltage Sensing	This pin observes the input voltage rail and protects the LED driver in case of too low mains conditions (brown- out). This pin also observes the input voltage rail for: - Power Factor Correction - Line Range Detection
5	V _{CC}	IC Supply Pin	This pin is the positive supply of the IC. The circuit starts to operate when V_{CC} exceeds 18 V and turns off when V_{CC} goes below 8.8 V (typical values). After start-up, the operating range is 9.4 V up to 26 V ($V_{CC(OVP)}$ minimum level).
6	DRV	Driver Output	The driver's output to an external MOSFET

http://www.dianyuan.com/bbs/1531940.html

http://www.dianyuan.com/bbs/1531940.html

Maximum Ratings Table(s)

Symbol	Rating	Value	Unit
V _{CC(MAX)} I _{CC(MAX)}	Maximum Power Supply voltage, V_{CC} pin, continuous voltage Maximum current for V_{CC} pin	-0.3 to 30 Internally limited	V mA
V _{drv(max)} I _{drv(max)}	Maximum driver pin voltage, DRV pin, continuous voltage Maximum current for DRV pin	-0.3, V _{DRV} (note 1) -300, +500	V mA
V _{MAX}	Maximum voltage on low power pins (except DRV and $V_{\text{CC}}\text{pins})$	-0.3, 5.5 (notes 2 and 5)	V
I _{MAX}	Current range for low power pins (except DRV and V_{CC} pins)	-2, +5	mA
$R_{ ext{ heta}J\text{-}A}$	Thermal Resistance Junction-to-Air	360	°C/W
T _{J(MAX)}	Maximum Junction Temperature	150	°C
	Operating Temperature Range	-40 to +125	°C
	Storage Temperature Range	-60 to +150	°C
	ESD Capability, HBM model (note 3)	3.5	kV
	ESD Capability, MM model (note 3)	250	V
	ESD Capability, CDM model (note 3)	2	kV

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- V_{DRV} is the DRV clamp voltage V_{DRV(high)} when V_{CC} is higher than V_{DRV(high)}. V_{DRV} is V_{CC} otherwise. This level is low enough to guarantee not to exceed the internal ESD diode and 5.5-V ZENER diode. More positive and negative 2. voltages can be applied if the pin current stays within the -2-mA/5-mA range.
- This device contains ESD protection and exceeds the following tests: Human Body Model 3500 V per JEDEC Standard JESD22-A114E, Machine Model Method 250 V per JEDEC Standard JESD22-A115B, Charged Device Model 2000 V per JEDEC 3. Standard JESD22-C101E
- This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78. 4.
- 5. Recommended maximum V_s voltage for optimal operation is 4 V.

http://www.dianyuan.com/bbs/1531940.html

Electrical Characteristics

(Unless otherwise noted: For typical values $T_J = 25$ °C, $V_{CC} = 12$ V, $V_{CS/ZCD} = 0$ V) For min/max values $T_J = -40$ °C to +125 °C, Max $T_J = 150$ °C, $V_{CC} = 12$ V)

STARTUP AND SUPPLY CIRCUITS

Description	Test Condition	Symbol	Min	Тур	Max	Unit
Supply Voltage						V
Startup Threshold	V _{cc} increasing	V _{CC(on)}	16.0	18.0	20.0	
Minimum Operating Voltage	V _{cc} decreasing	V _{CC(off)}	8.2	8.8	9.4	
Hysteresis $V_{CC(on)} - V_{CC(off)}$	V _{cc} decreasing	V _{CC(HYS)}	8.0	-		
Internal logic reset	V _{cc} decreasing	V _{CC(reset)}	4.0	4.8	6.0	
Threshold for V_{CC} Over Voltage Protection	Å	V _{CC(OVP)}	25.5	26.8	28.5	V
V _{CC(off)} noise filter		t _{VCC(off)}	- 1	5	-	μs
V _{CC(reset)} noise filter		t _{VCC(reset)}	-	20	-	
Startup current	V _{cc} =15.9 V	I _{CC(start)}	-	13	30	μA
Startup current in fault mode		I _{CC(sFault)}		58	75	μA
Supply Current			7			mA
Device Disabled / Fault	$V_{CC} > V_{CC(off)}$	Icc1	1.15	1.34	1.55	
Device Enabled / No output load on pin 5	F _{sw} = 65 kHz	ICC2	-	2.0	3.5	
Device Switching (F_{sw} = 65 kHz)	$C_{DRV} = 470 \text{ pF}, \text{ F}_{sw} = 65 \text{ kHz}$	I _{CC3}	-	2.5	4.0	

CURRENT SENSE

			-		
	VILIM	0.94	0.99	1.04	V
	t _{LEB}	220	275	340	ns
	t _{ILIM}	-	100	150	ns
	t _{on(MAX)}	26	36	46	μs
	V _{CS(stop)}	1.35	1.50	1.65	V
	t _{BCS}	-	175	-	ns
	I _{CS(short)}	400	500	600	μA
V _{cs} rising	V _{CS(low)}	30	90	150	mV
	V _{cs} rising	tLEB tLIM tILIM VCS(stop) tBCS ICS(short)	tLEB 220 tILIM - ton(MAX) 26 VCS(stop) 1.35 tBCS - ICS(short) 400	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

⁽¹⁾ The CS/ZCD pin is granted for weaver dirated your com/bbs/1531940. html

GATE DRIVE

Drive Resistance						
DRV Sink		R _{SNK}	-	13	-	Ω
DRV Source		R _{SRC}	-	30	-	
Drive current capability						
DRV Sink (Note GBD)		I _{SNK}	-	500	-	mA
DRV Source (Note GBD)		I _{SRC}	-	300	-	
Rise Time (10 % to 90 %)	C _{DRV} = 470 pF	t _r	-	40	-	ns
Fall Time (90 % to 10 %)	C _{DRV} = 470 pF	t _f	-	30	-	ns
DRV Low Voltage	$V_{CC} = V_{CC(off)} + 0.2 V$ $C_{DRV} = 470 \text{ pF}, \text{ R}_{DRV} = 33 \text{ k}\Omega$	V _{DRV(low)}	8	_		V
DRV High Voltage	$V_{\text{CC}} = V_{\text{CC(MAX)}}$ $C_{\text{DRV}} = 470 \text{ pF}, \text{ R}_{\text{DRV}} = 33 \text{ k}\Omega$	$V_{DRV(high)}$	10	12	14	V

ZERO VOLTAGE DETECTION CIRCUIT

ZERO VOLTAGE DETECTION CIRCUIT	~		(
Upper ZCD threshold voltage	V _{zCD} rising	V _{ZCD(rising)}	-	90	150	mV
Lower ZCD threshold voltage	V _{ZCD} falling	V _{ZCD(falling)}	35	55	-	mV
ZCD hysteresis		V _{ZCD(HYS)}	15	-	-	mV
Propagation Delay from valley detection to DRV high	V _{zcD} decreasing	t _{DEM}	-	200	300	ns
Blanking delay after on-time (normal operation)		tzcD(blank1)	1.12	1.50	1.88	μs
Blanking delay after on-time (startup phase)		t _{ZCD(blank2)}	2.24	3.00	3.76	μs
Timeout after last DEMAG transition		t _{TIMO}	6.0	7.3	9.0	μs
Time for which the CS/ZCD pin is grounded when the DRV turns low	DRV falling	T ₁	200	325	450	ns
Watch Dog Timer (restart timer in the absence of demagnetization signal like for instance in startup or short circuit conditions)		t _{wbg}	40	55	70	μs
Pulling-down resistor	V _{ZCD} = V _{ZCD} (falling)	R _{ZCD(pd)}		200		kΩ

CONSTANT CURRENT AND POWER FACTOR CONTROL

Reference Voltage at T _j = 25°C		V_{REF}	195	200	205	mV
Reference Voltage at T _j = 25°C-100°C		V _{REF}	192.5	200.0	207.5	mV
Reference Voltage $T_j = -40^{\circ}$ C to 125° C		V _{REF}	190	200	210	mV
V _{control} to current setpoint division ratio		V _{ratio}	-	4	-	-
Error amplifier gain	$V_{REFX}=V_{REF}$	G _{EA}	44	54	64	μS
Error amplifier current capability	$V_{REFX}=V_{REF}$	I _{EA}		+/- 60		μA
COMP Pin Start-up Current Source	COMP pin grounded	I _{EA_STUP}		125		μA

LINE FEED FORWARD

V _{VS} to I _{CS(offset)} conversion ratio		K _{LFF}	10	11	12	μS
Line feed-forward current on CS pin	DRV high, $V_{VS} = 2 V$	I _{FF}	19.5	22.0	24.5	μA
http://www.diopour	n = 2 and / 1 E 91	010 h	1			
nttp.//www.utanyua	<u>111. COIII/ DDS/ 1991</u>	940. II	UIIII			

	Offset current maximum value	V _{VS} > 5 V	I _{offset(MAX)}	44	53	64	μA
--	------------------------------	-----------------------	--------------------------	----	----	----	----

LINE RANGE DETECTION

Threshold for high- line range (HL) detection	V_{VS} rising	V _{HL}	1.9	2.0	2.1	V
Threshold for low-line range (LL) detection	V_{vs} falling	V _{LL}	1.8	1.9	2.0	V
Blanking time for line range detection		$t_{HL(blank)}$	15	25	35	ms

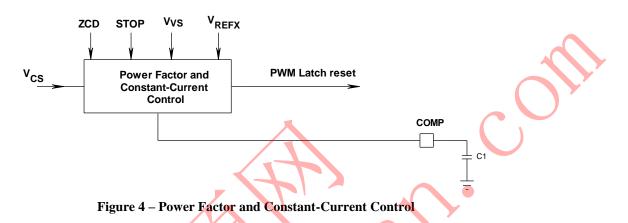
FAULT PROTECTION

Thermal Shutdown (note 6)	F _{sw} = 65 kHz	T _{SHDN}	130	150	170	°C
Thermal Shutdown Hysteresis		T _{SHDN(HYS)}	-	50	-	°C
Threshold voltage for output short circuit or aux. winding short circuit detection		V _{ZCD(short)}	0.94	0.99	1.04	v
Short circuit detection Timer	V _{ZCD} < V _{ZCD(short)}	t _{ovld}	70	90	110	ms
Auto-recovery timer duration		t _{recovery}	3	4	5	S
CS/ZCD OVP Threshold		V _{OVP2}	4.4	4.5	4.6	V
Brown-Out ON level (IC start pulsing)	V _s rising	V _{BO(on)}	0.95	1.00	1.05	V
Brown-Out OFF level (IC shuts down)	V _s falling	V _{BO(off)}	0.85	0.90	0.95	V
BO comparators delay		t _{BO(delay)}		30		μs
Brown-Out blanking time		t _{BO(blank)}	15	25	35	ms
Vs pin Pulling-down Current	V _S = V _{BO(on)}	BO(bias)	50	250	450	nA

Note 6: Guaranteed by Design

http://www.dianyuan.com/bbs/1531940.html

Application Information


The **NCL30288** is designed to control flyback-, buck-boost- and SEPIC-based LED drivers. A proprietary circuitry ensures accurate primary-side regulation of the output current (without the need for a secondary-side feedback) and near-unity power factor correction. The circuit contains a suite of powerful protections to ensure a robust LED driver design without the need for extra components or overdesign.

- Quasi-Resonance Current-Mode Operation: implementing quasi-resonance operation in peak currentmode control, the NCL30288 optimizes the efficiency by switching in the valley of the MOSFET drainsource voltage in low-line conditions. When in high line, the circuit skips one valley to lower the switching frequency.
- **Primary Side Constant Current Control with Power Factor Correction**: a proprietary circuitry allows the LED driver to achieve both near–unity power factor correction and accurate regulation of the output current without requiring any secondary–side feedback (no optocoupler needed). A power factor as high as 0.99 and an output current deviation below $\pm 2\%$ are typically obtained.
- Main protection features:
 - **Over Voltage Protection**: The CS/ZCD pin provides a programmable OVP protection. Adjust the external ZCD resistors divider or add a Zener diode to adjust the protection threshold: if the CS/ZCD pin voltage exceeds 4.5 V (during the demagnetization time) for 4 consecutive switching cycles, the controller stops operating for the 4-s auto-recovery delay.
 - *Cycle-by-cycle peak current limit*: when the current sense voltage exceeds the internal threshold V_{ILIM} , the MOSFET is immediately turned off (cycle by cycle current limitation).
 - Winding Short-Circuit Protection: an additional comparator senses the CS signal and stops the controller if it exceeds 150% x V_{ILIM} for 4 consecutive cycles. This feature can protect the converter if a winding is shorted or if the output diode is shorted or simply if the transformer saturates.
 - **Output Short-circuit protection:** If the ZCD pin voltage remains low for a 90-ms time interval, the controller detects that the output or the ZCD pin is grounded and hence, stops pulsating until a 4-s time has elapsed.
 - **Open LED protection**: if the V_{CC} pin voltage exceeds the OVP threshold, the controller shuts down and waits 4 seconds before restarting switching operation.
 - Floating or Short Pin Detection: the circuit can detect most of these situations which helps pass safety tests.

http://www.dianyuan.com/bbs/1531940.html

Constant Current Control

The NCL30288 embeds an analog/digital block to control the power factor and regulate the output current by monitoring the ZCD, V_S and CS pin voltages (signals ZCD, V_S and V_{CS} of Figure 4). This circuitry generates the current setpoint ($V_{CONTROL}$) and compares it to the current sense signal (V_{CS}) to dictate the MOSFET turning off event when V_{CS} exceeds $V_{CONTROL}$.

As illustrated in Figure 4, the V_s pin provides the sinusoidal reference necessary for shaping the input current. The obtained current reference is further modulated so that when averaged over a half-line period, it is equal to the output current reference (V_{REFX}). This averaging process is made by an internal Operational Transconductance Amplifier (OTA) and the capacitor connected to the COMP pin (C1 of Figure 4). Typical COMP capacitance is 1 μ F and should not be less than 470 nF to ensure stability. The COMP ripple does not affect the power factor performance as the circuit digitally eliminates it when generating the current setpoint.

If the V_s pin properly conveys the sinusoidal shape, power factor will be close to unity and the Total Harmonic Distortion (THD) will be low. In any case, the output current will be well regulated following the equation below:

$$I_{out} = \frac{V_{REF}}{2N_{PS}R_{sense}}$$
(eq. 1)

Where:

- N_{PS} is the secondary to primary transformer turns $N_{PS} = N_S / N_P$
- *R_{sense}* is the current sense resistor (see Error! Reference source not found.).
- V_{REF} is the output current internal reference (200 mV).

If a fault is detected, the circuit enters auto-recovery mode and the COMP pin is grounded. This is also the case if one of these situations is detected: brown-out, UVLO, floating GND pin fault, TSD fault. This ensures a clean start-up when the circuit resumes operation.

Start-up sequence

Generally an LED lamp is expected to emit light in < 1 s and typically within 300 ms. The start-up phase consists of the time to charge the N_{cc} (approximation of isotropy) and the base in 2000 and 1000 ms.

sufficient current flows into the LED string. To speed-up this phase, the following characteristics define the startup sequence:

- The COMP pin is grounded when the circuit is off. The average COMP voltage needs to exceed the V_s pin peak value to have the LED current properly regulated (whatever the current target is). To speed-up the COMP capacitance charge and shorten the start-up phase, an internal 80- μ A current source adds to the OTA sourced current (60 μ A max typically) to charge up the COMP capacitance. The 80- μ A current source remains on until the OTA starts to sink current as a result of the COMP pin voltage sufficient rise. At that moment, the COMP pin being near its steady-state value, only the OTA drives the COMP pin.
- If the load is shorted, the circuit will operate in hiccup mode with V_{CC} oscillating between V_{CC(off)} and V_{CC(on)} until the AUX_SCP protection forces the 4-s auto-recovery delay to reduce the operation duty-ratio (AUX_SCP trips if the ZCD pin voltage does not exceed 1 V within a 90-ms active period of time thus indicating a short to ground of the ZCD pin or an excessive load preventing the output voltage from rising). Figure 5 illustrates a start-up sequence with the output shorted to ground.

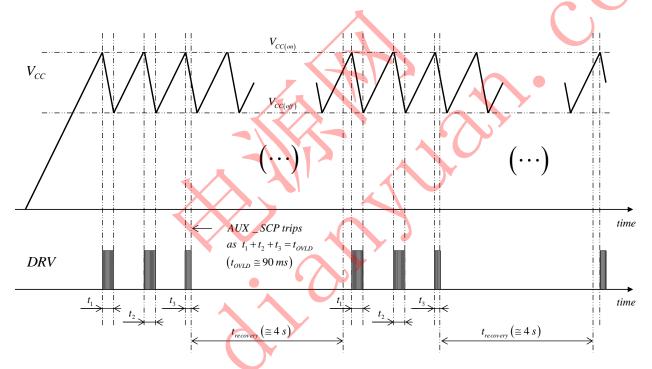


Figure 5 – Start-up sequence in a load short-circuit situation

Zero Crossing Detection Block

The CS/ZCD pin detects when the drain-source voltage of the power MOSFET reaches a valley by crossing down the 55-mV internal threshold and initiates a new DRV pulse at that moment. At startup and in overload conditions, the ZCD comparator may not be able to detect the demagnetization signal. To allow a new DRV pulse to occur, the NCL30288 features a watchdog timer which initiates a DRV pulse if the CS/ZCD pin voltage does not trig the ZCD comparator for the watchdog time. The watchdog duration is typically 55 µs at low line. It increases to 62 µs when the line range is detected (see next section).

As detailed in next section, the NCL30288 operates in QR mode at low line and at valley 2 in high-line conditions. If the auxiliary winding free oscillations are extremely damped, the ZCD comparator may not be able http://www.dlanyuan.com/bbs/1531940.html

to detect the second valley as necessary at high line. To overcome this high-line situation, the NCL30288 features a time-out circuit to initiate a DRV pulse if once the demagnetization is detected, the CS/ZCD pin voltage stays below the ZCD comparator internal threshold for about 7.3 μ s. Hence, the time-out acts as a substitute clock for valley-2 detection.

In other words:

- The timeout timer initiates a DRV pulse at high line if valley 1 is detected but valley 2 cannot be detected.
- The watchdog timer prevents the circuit from keeping permanently off if no demagnetization signal can be detected (e.g. at startup).

Whenever the controller enters operation (cold startup, restart after a failure to startup at the first attempt or operation recovery after a fault), the ZCD blanking time is $t_{ZCD(blank2)}$ (3 µs typically) and keeps this value until the ZCD signal is enough to be detected by the ZCD comparator. At that moment, the ZCD blanking time recovers its nominal level ($t_{ZCD(blank1)} = 1.5$ µs, typically).

If the ZCD pin or the auxiliary winding happen to be shorted, the watchdog function would normally make the controller keep switching and hence lead to improper LED current regulation. The "AUX_SCP" protection prevents such a stressful operation: a timer starts counting which is only reset when the ZCD voltage exceeds the $V_{ZCD(short)}$ threshold (1 V typically). If this timer reaches 90 ms (no ZCD voltage pulse having exceeded $V_{ZCD(short)}$ for this time period), the controller detects a fault and stops operation for 4 seconds.

The CS/ZCD pin is grounded for 325 ns (time T_1 of the parametric table) when the drive turns low. This prevents the CS signal to be taken into account by the ZCD comparator, which could otherwise occur in particular if a filtering capacitor was added to the pin. Similarly, the CS/ZCD is also grounded for the 275-ns leading edge blanking time to in this case, avoid that the ZCD signal alters the current sense block operation.

For an optimal operation, the maximum ZCD level should be maintained below 5 V to stay safely below the built in clamping voltage of the pin.

Line Range Detection

As sketched in Figure 6, this circuit detects the low-line range if the V_s pin remains below the V_{LL} threshold (1.9 V typical) for more than the 25-ms blanking time. High-line is detected as soon as the V_s pin voltage exceeds V_{HL} (2.0 V typical). These levels roughly correspond to 152-V rms and 160-V rms line voltages if the external resistors divider applied to the V_s pin is designed to provide a 1-V peak value at 80 V rms.

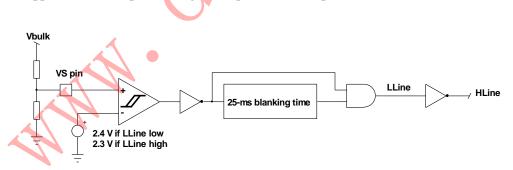


Figure 6: Valley Lockout schematic

In the low-line range, conduction losses are generally dominant. Adding a dead-time would further increase these losses. Hence, only a short dead-time is necessary to reach the MOSFET valley. In high-line conditions, switching http://www.dianyuan.com/bbs/1531940.html

losses generally are the most critical. It is thus efficient to skip one valley to lower the switching frequency. Hence, under normal operation, the NCL30288 optimizes the efficiency over the line range by turning on the MOSFET at the first valley in low-line conditions and at the second valley in the high-line case. This is illustrated by Figure 7 that sketches the MOSFET Drain-source voltage in both cases.

Figure 7 – Full-load operation - Quasi-resonant mode in low line (left), turn on at valley 2 when in high line (right)

Line Feedforward

As illustrated by Figure 8, the input voltage is sensed by the V_s pin and converted into a current. By adding an external resistor in series between the sense resistor and the CS pin, a voltage offset proportional to the input voltage is added to the CS signal for the MOSFET on-time.

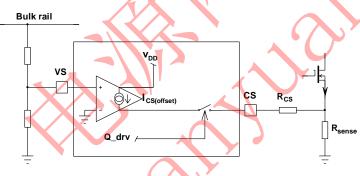


Figure 8: Line Feed-Forward schematic

In Figure 8, Q_drv designates the output of the PWM latch which is high for the on-time and low otherwise.

Protections

The circuit incorporates a large variety of protections to make the LED driver very rugged. Among them, we can list:

Output short circuit situation

An overload fault is detected if the CS/ZCD pin voltage remains below $V_{ZCD(short)}$ for 90 ms. The signal is compared to $V_{ZCD(short)}$ during the off time after the ZCD blanking time is elapsed. In such a situation, the circuit stops generating pulses until the 4-s delay auto-recovery time has elapsed.

Winding or Output Diode Short Circuit protection (WODSCP)

If a transformer winding happens to be shorted, the primary inductance will collapse leading the current to ramp up in a very abrupt manner. The V_{ILIM} comparator (current limitation threshold) will trip to open the MOSFET and eventually stop the current rise. However, because of the abnormally steep slope of the current, internal propagation delays and the MOSTET will compare will compare will compare will compare the Super Solution of the start of t

nominal maximum value set by V_{ILIM} . As illustrated in Figure 9, the circuit uses this current overshoot to detect a winding short circuit. The leading edge blanking (LEB) time for short circuit protection (LEB2) is significantly faster than the LEB time for cycle-by-cycle protection (LEB1). Practically, if four consecutive switching periods lead the CS pin voltage to exceed ($V_{CS(stop)}=150\% *V_{ILIM}$), the controller enters auto-recovery mode in version B (4-s operation interruption between active bursts) and latches off in version A. Similarly, this function can also protect the power supply if the output diode is shorted or if the transformer simply saturates.

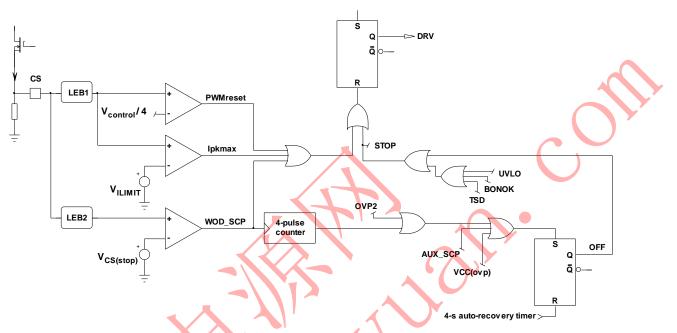


Figure 9: Winding short circuit protection, Max. Peak current limit circuits

V_{CC} Over Voltage Protection

The circuit stops generating pulses if V_{CC} exceeds $V_{CC(OVP)}$ and enters auto-recovery mode. This feature protects the circuit if the output LED string happens to open or is disconnected.

Programmable Over Voltage Protection (OVP2)

The ZCD signal is compared to an internal 4.5-V threshold. If V_{ZCD} exceeds this threshold for more than 1 µs (after the ZCD blanking time), an OVP event is detected. If this happens for 4 consecutive switching cycles, an OVP fault is detected and the system enters auto-recovery mode.

Cycle-by-Cycle Current Limit

When the current sense voltage exceeds the internal threshold V_{ILIM} , the MOSFET is turned off for the rest of the switching cycle.

Brown-Out Protection

The NCL30288 prevents operation when the line voltage is too low for proper operation. As sketched in Figure 10, the circuit detects a brown-out situation if the V_s pin remains below the V_{BO(off)} threshold (0.9 V typical) for more than the 25-ms blanking time. In this case, the controller stops operating. Operation resumes as soon as the V_s pin voltage exceeds V_{BO(on)} (1.0 V typical) and V_{CC} is higher than V_{CC(on)}. To ease recovery, the circuit http://www.dianyuan.com/bbs/1531940.html

overrides the V_{CC} normal sequence (no need for V_{CC} cycling down below $V_{CC(off)}$). Instead, its consumption immediately reduces to $I_{CC(start)}$ so that V_{CC} rapidly charges up to $V_{CC(on)}$. Once done, the circuit re-starts operating.

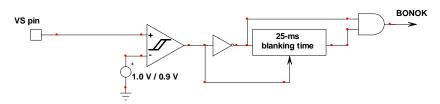


Figure 10: Brown-out circuit

Die Over Temperature (TSD)

The circuit stops operating if the junction temperature (T_J) exceeds 150 °C typically. The controller remains off until T_J goes below nearly 100 °C.

Pin connection faults

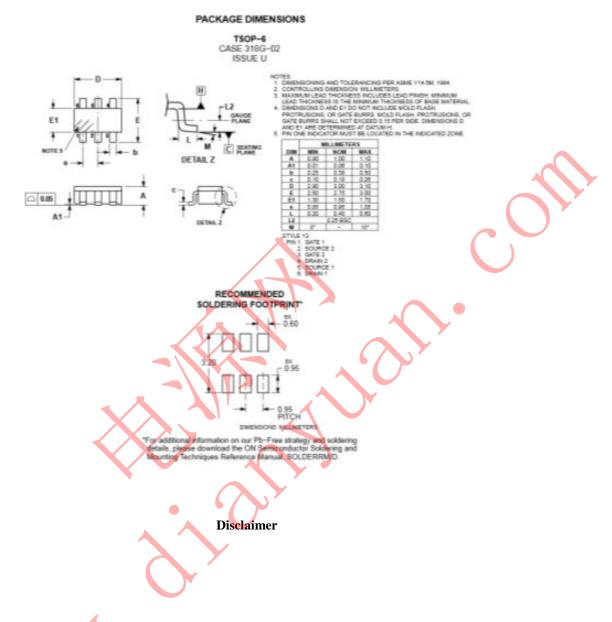
The circuit addresses most pin connection fault cases:

• CS pin short to ground

The circuit senses the CS/ZCD pin impedance every time it starts-up and after DRV pulses terminated by the 36-µs maximum on-time. If the measured impedance does not exceed 120 ohm typically, the circuit stops operating. In practice, it is recommended to place a minimum of 250-ohm in series between the CS pin and the current sense resistor to take into account possible parametric deviations.

• Fault of the GND connection

If the GND pin is properly connected, the supply current drawn from the positive terminal of the V_{CC} capacitor, flows out of the GND pin to return to the negative terminal of the V_{CC} capacitor. If the GND pin is not connected, the circuit ESD diodes offer another return path. The accidental non connection of the GND pin is monitored by detecting that one of the ESD diode is conducting. Practically, the ESD diode of CS pin is monitored. If such a fault is detected for 200 µs, the circuit stops generating DRV pin.


More generally, pin incorrect connection situations (open, grounded, shorted to adjacent pin) are covered by ANDxxxx.

Ordering information

Device	Package type	Shipping
NCL30288DR2G	TSOP-6 (Pb-Free/Halide Free)	2500/reel

http://www.dianyuan.com/bbs/1531940.html

Package Outline Information

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

The products described herein (NCP1380) may be covered by one or more U.S. patents. There may be other patents pending.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the path. SCILLC was negligent regarding the design or manufacture of the path. SCILLC was negligent regarding the design or manufacture of the path. SCILLC was negligent regarding the design or manufacture of the path. SCILLC was negligent regarding the design or manufacture of

http://www.dianyuan.com/bbs/1531940.html