

LED Backlight Controller

Features

- 7V to 27V input voltage range
- High power current mode DC/DC boost controller
- 100Hz to 1kHz Dimming Frequency
- Internal 5V/12V Voltage Regulator
- Programmable LED current
- Programmable Slope compensation
- **■** Protections:
 - Open LED Protection (OLP)
 - Short LED Protection (SLP)
 - Switch Over Current Protection (OCP)
 - Output Over Voltage Protection (OVP)
 - Over Temperature Protection (OTP)
- SOP-10 Package
- RoHS Compliant

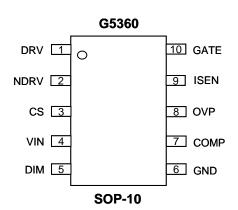
Applications

- LCD TV LED Backlighting
- LCD Monitor LED Backlighting

General Description

The G5360 is a current mode LED driver and boost controller. The PWM DIM input not only drives the load PWM switch, but also enables NDRV switching and error amplifier operation. This feature provides extremely fast, true PWM load switching. External current sense resistor and slope compensation resistor make it flexible for various applications.

An ISEN pin is used for programming LED current. A high contrast ratio true PWM dimming can be achieved by driving DIM pin with a PWM signal. LED current is proportional to the DIM pin duty.


The G5360 features extensive protection functions that include OLP, SLP, OCP, OVP and OTP. It is available in a SOP-10 package.

Ordering Information

ORDER NUMBER MARKING		TEMP. RANGE	PACKAGE (Green)
G5360PA1U	G5360	-40°C to +85°C	SOP-10

Note: PA: SOP-10 1: Bonding Code U: Tube & Reel

Pin Configuration

1

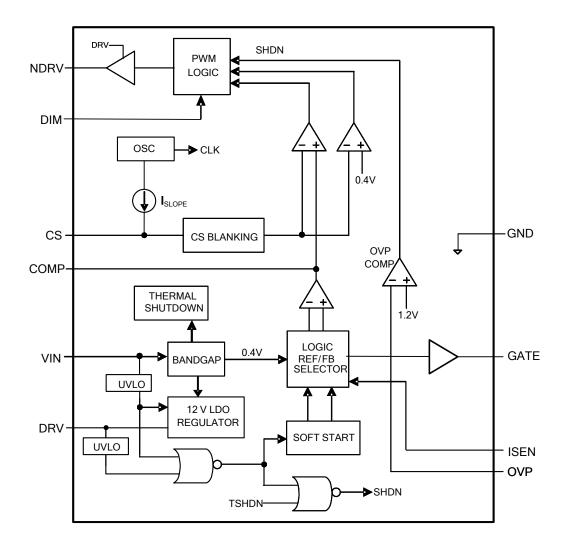
Absolute Maximum Ratings

VIN, DRV to GND0.3V to +30V	Thermal Resistance Junction to Case, (θ_{JC})
NDRV to GND0.3V to V_{DRV} +0.3V	SOP-10
GATE to GND0.3V to V_{DRV} +0.3V	Operating Temperature Range40°C to 85°C
DIM, CS, ISEN, COMP, OVP to GND0.3V to +6V	Junction Temperature
Thermal Resistance Junction to Ambient, (θ _{JA})	Storage Temperature Range65°C to 150°C
SOP-10	Reflow Temperature (soldering, 10s) 260°C

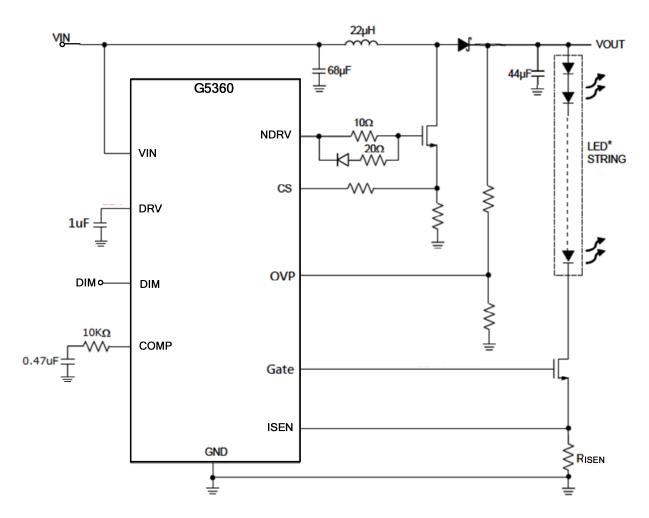
Electrical Characteristics

 V_{IN} =12V, V_{DIM} =5V, T_A = 25°C

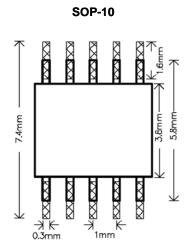
The device is not guaranteed to function outside its operating conditions. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.


PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
IN Supply Voltage		7		27	V
IN Standby Supply Current			160	μA	
VIN UVLO Threshold			6	7	V
Internal Regulator Output DRV			12		V
OSCILLATOR					
Switching Frequency		-20%	200	+20%	kHz
Maximum Duty		85	90		%
Current Sense & Slope Compensation	tion				
Current Sense Leading Edge		100		375	ns
Blanking		100		373	115
PWM Duty Comparator Delay Time			50		ns
CS slope compensation	$R_{SC} = 1k\Omega$		0.12		V
Current Limit Threshold		350	400	450	mV
ERROR AMPLIFIER					
ISEN Reference Voltage		388	400	412	mV
Transconductance		260	360	460	μA/V
MOSFET DRIVER					_
NDRV Source Current	V _{IN} = 12V		300		mA
NDRV Sink Current	V _{IN} = 12V		500		mA
GATE Source Current	V _{IN} = 12V		15		mA
GATE Sink Current	V _{IN} = 12V		25		mA
Dimming					
DIM Input High Voltage		2			V
DIM Input Low Voltage				0.8	V
DIM Input Pull Low Current			2		μA
Protections	•				
OVP Threshold	Vove rising	-3%	1.2	+3%	V
SCP Threshold	Vove falling		100		mV
SLP Threshold	VISEN rising	550	600	650	mV
OTP Threshold			150		°C
OTP Hysteresis			20		°C

Pin Descriptions


NAME	PIN	FUNCTION	
DRV	1	Internal Controller 12V Power Pin. It must be bypassed with a low ESR capacitor to ground.	
NDRV	2	Switching Gate Driver Output Pin. Controls the main n-channel MOSFET switch.	
CS	3	Current Sense Pin. It is used to sense drain current of the main n-channel MOSFET switch	
VIN	4	12V/24V Input Power Supply Pin.	
DIM	5	PWM Dimming Pin. Default pulled low while floating	
GND	6	IC ground	
COMP	7	Loop Compensation Pin.	
OVP	8	Over Voltage Sense Pin. When this pin reaches 1.2V, the NDRV and GATE output will be pulled down to ground.	
ISEN	9	LED current Adjust Input. Connect a resistor(R _{ISEN}) from ISEN to GND to set the current through LED string (I _{LED}) according to the formula I _{LED} =0.4/R _{ISEN} Connect ISEN pin to GND for unused.	
GATE	10	Gate control pin of the n-channel load PWM switch.	

Block Diagram



Typical Application Circuit

Minimum Footprint PCB Layout Section

Function Description

Power Sequence

As V_{IN} powered up to its UVLO threshold, the G5360 will enter standby mode. In standby mode, the G5360 receives DIM signal. The first DIM rising edge triggers G5360 to power on, and then the boost converter will follow internal soft start ramp to charge the output capacitor with minimized inrush current.

The G5360 start to normal operation by receiving the last appeared signal between VIN and DIM. Any sequence of VIN and DIM is acceptable.

DRV Regulator

DRV voltage regulator generates 12V voltage for NDRV driver circuit. It must bypassed using a low ESR MLCC to ground.

Boost Converter

The current mode PWM boost converter produces one output voltage needed to enable the LED stack to run at the programmed current. The feedback to the boost loop controller is taken from ISEN pin, which is regulated at 0.4V when normal operation.

Error Amplifier

The error amplifier regulates inductor current by comparing internal reference and the feedback of the boost converter. A 0.4V internal reference voltage is used to minimize the output voltage for better efficiency.

Once the dimming control stop LED current sinks, the error amplifier is also stop to control output voltage. Keep the output capacitors charge for the fast response of next dimming command.

Feedback Compensation

To make G5360 stable, loop compensation circuit must be considered. Control loop bandwidth in the boost converter is often determined by RHP (right-half plane) zero. It is calculated as:

$$f_{\text{RHPZ}} = \frac{(1 - D_{\text{MAX}})^2 x (V_{\text{OUT}} / I_{\text{OUT}})}{2\pi \times L}$$

A RHP zero increases the gain and also increase phase shift. To avoid this RHP zero, a loop bandwidth frequency (F_c) often choose to 1/5~1/10 below RHP zero.

When the F_{C} is determined, the R_{COMP} can be calculated as:

$$R_{\text{COMP}} = \frac{2\pi \times F_{\text{C}} \times C_{\text{OUT}} \times R_{\text{CS}}}{G_{\text{M(EA)}}}$$

 R_{COMP} determines the high frequency gain and C_{COMP} determines the response time. R_{COMP} and C_{COMP} zero is often designed to cancel the output pole:

$$C_{COMP} = \frac{(V_{OUT}/I_{OUT}) \times C_{OUT}}{R_{COMP}}$$

Slope Compensation

Choosing a slope compensation which is at least one half of the down slope of the inductor current ensures that the converter will be stable for all duty cycles.

Slope compensation can be programmed by the resistor R_{SC} . Assuming a down slope (DS, unit: A/s) for the inductor current, the slope compensation resistor can be calculated as:

$$R_{SC}(\Omega) = \frac{0.5 \times DS \times T_S \times R_{CS}}{I_{SLOPE}}$$

Where DS=(VO-VIN)/L, I_{SLOPE}=120uA(typ.)

Program LED Current

The brightness should be set by choosing a R_{ISEN} resistor that sets the LED maximum current as:

$$ILED = (0.4) / R_{ISEN}$$

LED Dimming Control

The G5360 features a DIM pin for the use of PWM dimming control. It accepts the PWM frequency range from 100Hz to 20kHz. But the minimum LED turn on time is determined by inductor current ramp speed, the reasonable limit is around 10 switching cycle time. Recommend using low frequency (100Hz~1kHz) PWM dimming control to obtain good linearity.

FAULT protection

The G5360 has built-in various protections: output over voltage protection (OVP), output short circuit protection (SCP), over current protection (OCP), short LED protection (SLP), open LED protection (OLP), and Over Temperature protection (OTP).

A. Open LED Protection (OLP)

When the LED string is open, the output will reach OVP threshold, then the G5360 turn off switching and the LED string. This LED string with fault condition is latched off until the re-start of G5360 by VIN or DIM.

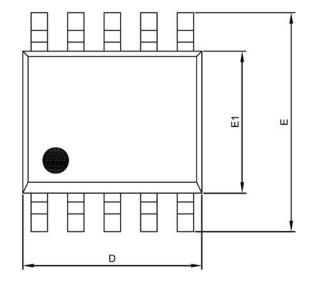
B. Short LED Protection (SLP)

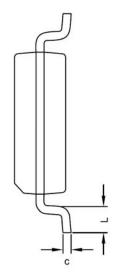
Short the LED string anode and cathode makes ISEN

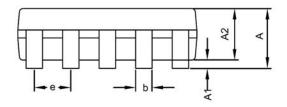
pin feedback higher voltage than ISEN over voltage threshold, 0.6V in G5360. SLP will be activates to turn off the LED string with fault condition and it will be latched off until the re-start of G5360 by VIN or DIM.

C. Over Current Protection (OCP)

The boost converter features an OCP to protect external n-channel MOSFET from too much power and damage. The CS pin voltage is sensed and compare to 400mV when the turn on period of MOSFET. If $V_{\rm CS}$ exceed the threshold, the controller immediately turns off the MOSFET. It is operate every switching cycle.

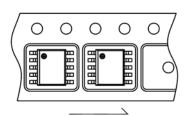

D. Output Over Voltage Protection (OVP)


At the output reaches OVP threshold, the boost converter stop switching and turns off the LED string. It needs to re-start G5360 by VIN or DIM to remove this protection.


E. Over Temperature Protection (OTP)

An on chip thermal sensor is embedded to limit the device from thermal over load (temperature>150°C). When this condition is occurred, the G5360 stop switching and stop current sink until cooled down.

Package Information



SOP-10 Package

Ch.l.	DIMENSION IN MM			DIMENSION IN INCH		
Symble	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	1.35	1.55	1.75	0.053	0.061	0.069
A1	0.00		0.25	0.000		0.010
A2	1.15	1.35	1.50	0.045	0.053	0.059
D	4.80	4.90	5.00	0.189	0.192	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.153	0.157
С	0.19	0.23	0.27	0.007	0.009	0.011
b	0.30	0.38	0.45	0.012	0.015	0.018
е		1.00 BSC			0.039 BSC	
L	0.40	0.84	1.27	0.016	0.033	0.050

Taping Specification

Feed Direction

PACKAGE	Q'TY/REEL		
SOP-10	2,500 ea		

GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.