

Medium/High Power Lighting LED Driver

NU513

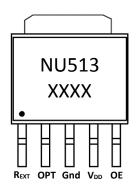
360mA Single channel LED Driver

Features

- Up to 360mA single channel constant current regulator
- Current set by an external resistor
- 1.6V ~ 16V wide supply voltage range supports self-power structure in lighting application
- Low dropout voltage (1V/350mA)
- 100kHz OE dimming support
- 10kHz V_{DD} dimming support
- -40° C ~ 85° C operating temperature
- Less than ±5% Chip to Chip current skew
- Less than 1%/V load (or line) regulation
- 160°C half power / 115°C recovery thermal protect

Product Description

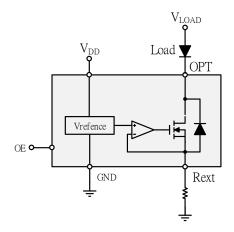
NU513 is a medium/high power linear current regulation component that can be easily used in various LED lighting applications. It has good load/line regulation characteristic, minimized chip current skew, stable output current in high power or load voltage fluctuating environment. Thus NU513 can be used in large dimension LED lighting source that has good lighting uniformity. NU513 also can be used in the digital PWM controlled circuit to achieve more precise current adjusting in gray level applications.


With the feature of wide power supply range design and ultra-low I_{DD} consumption, the NU513 supports the self-powered structure in LED lighting applications. In this structure, the NU513 no need to be provided a dedicate power circuit even the system power voltage is much higher than the maximum operation voltage of NU513. The V_{DD} power can be gotten from the proper position in LED streams of the system.

Applications

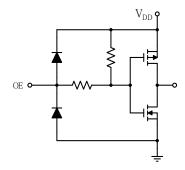
- General LED lighting
- Decoration lighting for architecture
- LED torch / flash light
- RGB lighting
- RGB display / indicator

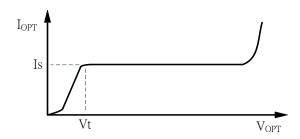
Package Type


• TO252-5L (Part No. : NU513T2)

Terminal Description

Pin name	Function		
V_{DD}	Power supply		
OPT	Current sink		
R _{EXT}	Current setting Resistor		
OE	Output enable		
GND	Ground		


Block Diagram


-1- Ver.01

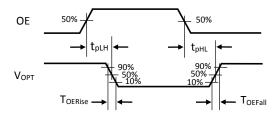
TEL: +886-3-658-9936

Equivalent Circuits for Inputs

Ideal IV characteristic

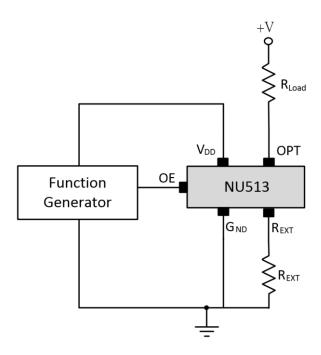
Maximum Ratings (T = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V_{DD}	0 ~ 20	V
Input voltage (Digital I/O)	V _{OE}	-0.2 ~ V _{DD}	V
Output voltage	V _{OPT}	-0.2 ~ 20	V
Output current	I _{PN}	0 ~ 400	mA
Power Dissipation (Ta=25°C)	PD _{MAX}	3.2	W
Thermal Resistance (On PCB, Ta=25°C)	R _{TH(j-a)}	42	°C /W
Operating temperature	T _{OPR}	-40 ~ +85	°C
Storage temperature	T _{STG}	-55 ~ +150	°C


Electrical Characteristics and Recommended Operating Conditions

Characteristic	Symbol	Condition		Min.	Тур.	Max.	Unit
Supply voltage	V_{DD}	Room Temp. V _{OPT} = 1V		1.5	1.6	16	V
Output voltage	V_{OPT}	PD s	≤ PD _{RMP}	-	-	17	V
Cumply current		V _{DD} ≤ 13V		40	80	150	uA
Supply current	I _{DD}	V _{DD}	o ≤ 16V	-	1	2	mA
			I _S ≤20mA	-	0.15	0.2	
Minimum dropout voltage	V_OPT	V _{DD} ≥ 4.5V	I _S ≤ 100mA	0.35	0.4	0.45	V
willilliam dropout voltage	V OPT	VDD ≥ 4.5V	I _S ≤ 200mA	0.55	0.6	0.65	V
			Is ≤ 360mA	-	1	1.1	
Output current	І ОРТ	PD s	≤ PD _{RMP}	-	-	360	mA
Recommended Maximum Operating Power Dissipation	PD_RMP	(Ta=25°C)		-	-	1.8	W
Leakage	l _{Leakage}	V _{OPT} = 10V	$1.5V \le V_{DD} \le 16V$ $OE = 0V$	-	-	0.5	uA
		V _{DD} ≤ 0.2V					
Line regulation	%/V _{DD}	13V > V _{DD} > 1.6V		-	-	±1	%/V
Load regulation	%/V _P	8V>V _{OPT} >0.4V		-	-	±1	%/V
Thermal regulation	%/10°C	$V_{DD} = V_P = 3V$		-	-	±0.5	%/10°C
	V_{IH}	V _{DD} ≥ 5V		3.2	-	-	V
Input voltage		V _{DD} < 5V		0.7*V _{DD}	-	-	V
input voitage	V _{IL}	V _{DD} ≥ 5V		-	-	2	V
		V _{DD} < 5V		-	-	0.3*V _{DD}	V
Half power temperature	T_{half}	$I_{\mathit{OPT}} \cong rac{I_{\mathit{NORMAL}}}{2}$		-	160	-	$^{\circ}\!\mathbb{C}$
Half power recovery temperature	T_{recov}	I_{OPT} recover to I_{NORMAL}		-	115	-	
Chip current skew	I _{Skew}	V _{DD} =	= V _P = 3V	-	3	5	%

Switching Characteristics (T = 25°C)

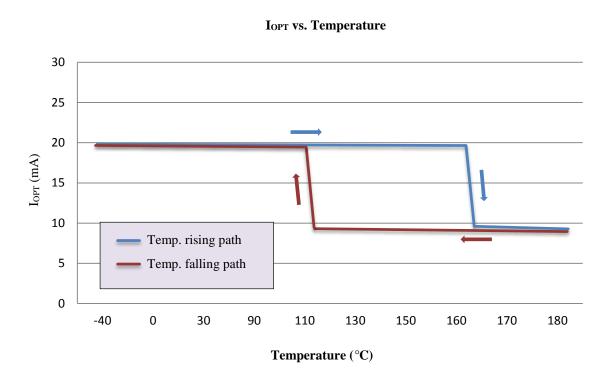

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time (OE from "L" to "H")	t _{рLН}	$V_{DD}=4V$, $V_{OPT}=1V$, $I_{OPT}=120$ mA, $OE=0V \rightarrow 4V$	140	200	260	nS
Output current rising time (OE from "L" to "H")	toeRise	$V_{DD}=4V$, $V_{OPT}=1V$, $I_{OPT}=120$ mA, $OE=0V \rightarrow 4V$	30	40	60	nS
Propagation Delay Time (OE from "H" to "L")	t _{рНL}	$V_{DD}=4V$, $V_{OPT}=1V$, $I_{OPT}=120$ mA, $OE=4V \rightarrow 0V$	260	320	380	nS
Output current falling time (OE from "H" to "L")	t _{OEFall}	$V_{DD}=4V$, $V_{OPT}=1V$, $I_{OPT}=120$ mA, $OE=4V \rightarrow 0V$	30	50	80	nS

Timing Waveform

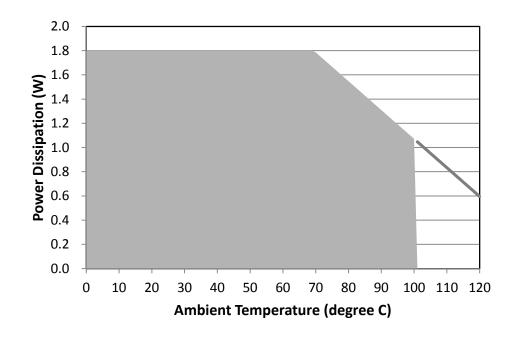
OE timing diagram

Test Circuit

Output Current Setting

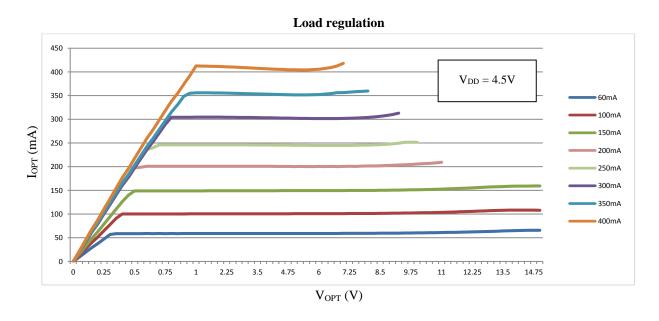

The output current of NU513 is set by an external resistor (R_{EXT}). The output current can be figured out by following equation.

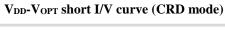
$$Iout \cong \frac{0.195V}{R_{EXT} + 0.2\Omega}$$

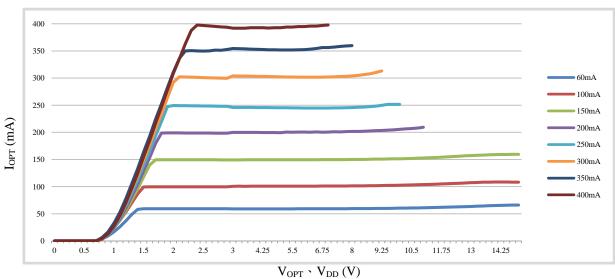

- 4 - Ver.01

Thermal protection

When NU513 is working normally and junction temperature is more than half power temperature (~160°C), the output current of NU513 will decrease about 50% to lower down the power dissipation on chip. This lower power state will be recovered when the junction temperature is lower than recovery temperature (~115°C).

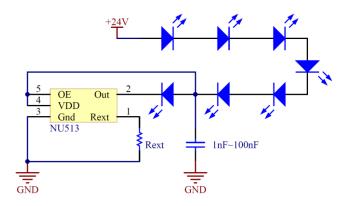



Power Dissipation and Recommended IOPT - VOPT Table

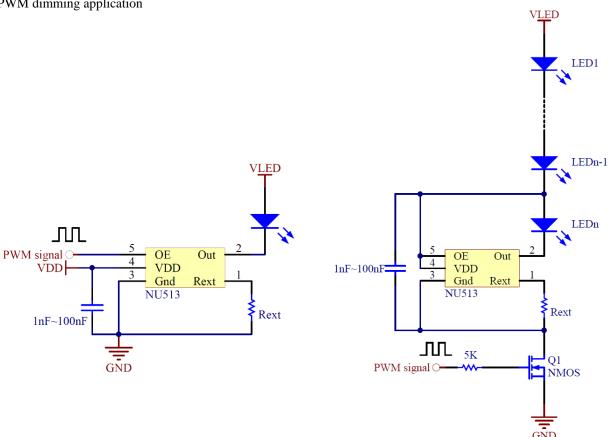


Iopt (A)	Max. Vopt (V) recommended
0.12	15
0.2	9
0.3	6
0.4	4.5

Output I/V Curve

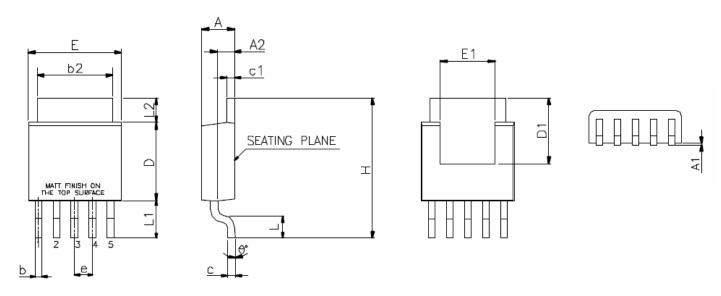


Minimum dropout voltage


I _{OPT} (mA) Condition	60mA	100mA	150mA	200mA	250mA	300mA	350mA	400mA
V _{DD} =4.5V V _{OPT}	0.35V	0.4V	0.5V	0.6V	0.7V	0.8V	0.95V	1.05V
V _{DD} =V _{OPT}	1.45V	1.5V	1.65V	1.8V	1.95V	2.05V	2.2V	2.35V

Typical Application Circuit

24V General lighting


PWM dimming application

Note: Generally, The capacitance of V_{DD} capacitor when self-power structure is used is about the same as LED typical current. For example, if the typical current of LED is 100mA, the capacitance is about 100nF. The capacitance can be adjusted according to the requirement of real applications.

> - 7 -Ver.01

Package Dimensions

CAMBOLC	DIMENSION	IS IN INCH	DIMENSIONS	n millimeter	
SYMBOLS	MIN.	MAX.	MIN.	MAX.	
Α	0.086	0.094	2.18	2.39	
A1	0.000	0.005	0.00	0.13	
A2	0.040	0.050	1.02	1.27	
b	0.020) TYP.	0.51	TYP.	
b2	0.205	0.215	5.21	5 <i>.</i> 46	
С	0.018	0.023	0.46	0.58	
c1	0.018	0.023	0.46	0.58	
D	0.210	0.220	5.33	5.59	
D1	0.180	_	4.57	_	
E	0.250	0.265	6.35	6.73	
E1	0.150	_	3.81	_	
е	0.050	BSC.	1,27	BSC.	
Η	0.370	0.410	9.40	10.41	
L	0.055	0.070	1,40	1 <i>.</i> 78	
L1	0.105 REF.		2.67	REF.	
L2	0.06	0.08	1.52	2.03	
θ	0,	4*	O.	4'	

NOTES:

1. JEDEC OUTLINE : N/A

Taping Specification

Part No.	PACKAGE	Q'TY/REEL
NU513T2	TO252-5	3,000 ea

- 8 - Ver.01

Restrictions on product use

- NUMEN Tech. reserves the right to update these specifications in the future.
- The information contained herein is subject to change without notice.
- NUMEN Technology will continually working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing NUMEN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such NUMEN products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that NUMEN products are used within specified operating ranges as set forth in the most recent NUMEN products specifications.
- The NUMEN products listed in this document are intended for usage in general electronics applications (lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These NUMEN products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of NUMEN products listed in this document shall be made at the customer's own risk.