High Performance Current Sensor

Based on Magtron Programmable ASIC Solution

Features

- Ultra small packaging
- ◆ Magtron Quadracore technology
- ◆ Open loop programmable solution
- Single 5V supply voltage
- Printed circuit board mounting
- Casing and materials UL-listed
- Appearance patented

Applications

- ◆ Inverter and Servo
- ◆ Home appliance
- ◆ Shunt solution replacement
- ◆ Uninterruptible Power Supply

Characteristics

- ◆ Stable accuracy
- ◆ Low temperature coefficient
- ◆ High immunity to external interference
- ◆ Programmable analog output
- ◆ Low insertion loss
- ◆ Integration frequency filter
- ◆ Easy to mount with automatic handling system

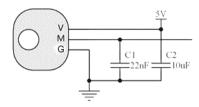
Standards

◆ EN50178 : 1997 ◆ IEC61010-1 : 2010 ◆ UL508 : 2010

Select Part List

Part Number	Primary current measuring range	Quantity/Carton		
MS20	20A	480 pcs		

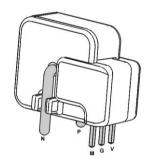
Overview


The MS series device is a high performance current sensor based on Magtron programmable ASIC Quadracore technology with high accuracy in the full temperature range, adjustable analog output.

It's suitable for the application of industrial products, such as the inverter, UPS, servo motor driver and other industrial products. The ultra-small package is designed for the high power density application and easy to use.

MS series is designed for the replacement of shunt solution and the transformer solution with high cost effective.

Application circuit


Note :C1, C2 needs to be close to the current sensor pin Component selection reference :

Designator	Description
C1	TDK,X7R,22nF/16V,±10%,0603
C2	TDK,X5R,10uF/16V,±10%,0603

Pin Definition

Symbol	Description			
V	Power supply pin			
G	Power GND pin			
M	Signal output pin			

Assembly PIN output:

N,P: The primary side PinV,G,M: Secondary side Pin

PCB Layout Reference

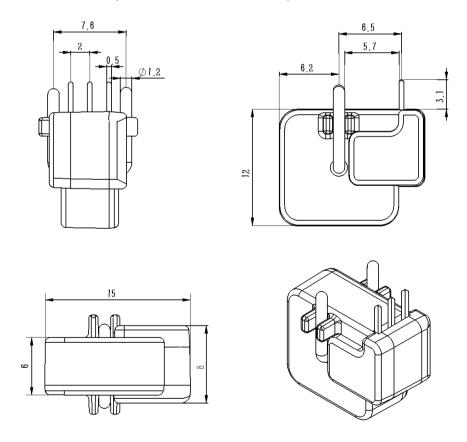
MS Demo board

Absolute Maximun ratings

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage(not operating)	Vc			9	V
Jumper temperature	TJ		120		°C
Ambient operating temperature	TA	-40		+85	°C
Ambient storage temperature	T _A	-40		+105	°C
ESD rating, Human Body Model (HBM)	UESD		2		kV

Isolation charachteristics

Parameter	Symbol	Min	Unit	Comment
RMS Voltage for AC Insulation test 50/60Hz/1 min	V_D	3	kV	
Through hole conductor isolation distance suggestion	D _{CP}	5.7	mm	


Electrical data MS20

At Ta=25°C,Vc=5V,RL=100K Ω , unless otherwise noted

Parameter	Symbol	Min	Тур	Max	Unit	Comment
Primary nominal rms current	I _{PN}		10		Α	
Primary current , measuring range	I _{PM}		20		Α	
Supply voltage	Vc		5		V	
Number of primary tums	N _P		1			
Current consumption	Ic		13		mA	
Output Voltage range@I _{PM}	Vo		2.5±2		V	
Temperature coefficient of Vo	TCVo		±300		PPM/K	
Theoretical Sensitivity	G _{TH}		100		mV/A	
Gain error	ε _G		3		%	@+85 ℃
Temperature coefficient of Gain	TCG		200		PPM/K	@-40~+85℃
Linearity error 0~I _{PM}	εL		2		% of I _{PM}	
Magnetic offset voltage	Vом		5		mV	
Accuracy @I _{PM}	X		2		% of I _{PN}	@-40~+85°C
Freguency bandwidtn(-3 dB)	BW		150		kHz	
Reaction time@10% of I _{PN}	T _{RA}		1.2		uS	@Fre=500Hz
Reaction time@90% of I _{PN}	TA		2		uS	@Fre=500Hz

Dimensions in MS series

Mechanical Characteristics (Unit:mm, Tolerance in +-0.2)

Update: 2015.6.30 [3]