

CW3002D

USB Charging Controller

Q176490316 136 7023 2221

Features

- D+/D- DCP Mode per USB Battery Charging Specification 1.2
- D+/D- Short Mode per Telecommunication Industry Standard YD/T1591-2009 (Chinese)
- Supports non-BC1.2 Charging Modes by Automatic Selection
 - D+/D- Option for Apple Device
 - D+/D- Option for Samsung Device
- Operating Voltage Range: 4.5V to 5.5V
- Power Consumption
 - 5uA When VDD<POR threshold
 - 180uA When VDD>POR threshold
- Lead(Pb)-Free, Halogen-Free, SOT23-5 Package
- 8kV HBM ESD Rating on D+/D- Pins

Applications

- Power bank
- USB Ports (Hosts and Hubs)
- MID OTG Port
- Wall Charging Adapters

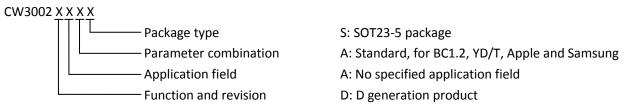
General Description

The CW3002 is the USB dedicated charging controller IC, which is fully compatible with BC1.2 and other non-BC1.2 standards like YT/D1591-2009, Apple charging specification (for i-Pad & i-Phones) and specs from Samsung Galaxy family.

The IC is used to facilitate charging procedure when most of the mainstream handheld devices are detected.

The CW3002 is suitable for all the charger products using USB interface like power bank, wall adapter and even MID device with OTG function. The IC is provided with enhanced ESD protection up to +/-8kV with application on D+/D- Pins.

CW3002 is available in tiny SOT23-5 package.


Order Information Q176490316 136 7023 2221

Name	Operation Temperature	Package	Package Mark
CW3002DAAS	-30℃ to 80℃	SOT23-5	3002D

Notice: CellWise reserves the rights to change the datasheet and products without notification.

Q176490316 136 7023 2221

Type number

Function Block Diagram

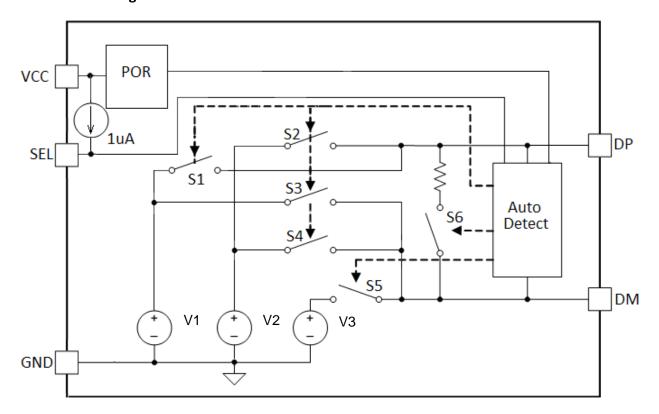
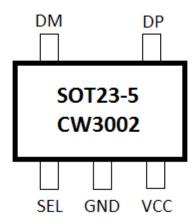


Fig1. Block diagram


Absolute Maximum Ratings

Voltage on VCC Pin Relative to GND	 GND-0.3 to GND+6V
Voltage on SEL Pin Relative to GND	 GND-0.3 to VCC+0.3V
Voltage on DP DM Relative to GND	 GND-0.3 to VCC+0.3V
Operating Temperature Range	 -30°C to 80°C
Junction Temperature	 150 ℃
Store Temperature Range	 -55℃ to 125℃

Caution:

Stresses beyond "Absolute Maximum Ratings" condition may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Arrangement and Description

Q176490316 136 7023 2221

Fig2. Pin arrangement

Pin No.	Pin Name	Description
1	SEL	Work Mode Selection with 1uA pull up current
2	GND	Ground
3	vcc	Power
4	DP	USB positive data-channel to external USB device
5	DM	USB negative data-channel to external USB device

Table1. Pin description

Electrical Characteristics Recommended DC Operating Conditions

(4.5 \leq VCC \leq 5.5, T_A= -40 $^{\circ}$ 80 $^{\circ}$ C, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNITS
VCC Voltage			4.5		5.5	V
VCC POR Voltage	VCC _{POR}		3.5		3.9	V
	VCC _{POR_HYS}			250		mV

Table2. Electrical Operating Parameters

DC Electrical Characteristics

 $(4.5 \le VDD \le 5.5, T_A = -40^80^{\circ}C, unless otherwise specified.)$

Q176490316 136 7023 2221

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNITS
DC Current Consumption	I _{vcc}			180	240	μΑ
Output Resistance on DP/DM pin	R _{OUT}	Output voltage=2.0		30		kΩ
		Output voltage=2.7		23		kΩ
Default Voltage on DPx/DMx pin	V _{OUT}	Output voltage=2.7,VCC=5V	2.6	2.7	2.8	V
		Output voltage=2.0,VCC=5V	1.9	2.0	2.1	V
Short Condition Resistance	R _{DMDP}			50		Ω
SEL pull up current	I _{SEL_PU}			1		μΑ

Table3. DC Electrical Characteristics

^{*} Actual charging current is programmed by the external resistor connected to the Ichg pin

Function

CW3002 is a specified USB charger controller IC for external device charging. CW3002, integrated with intelligent USB detection circuits, can identify most of the handheld equipment in market, such as Apple, Samsung, HTC mobile phones and other USB supplied devices.

CW3002 monitors the D+/D- voltage all the time, and automatically emulates the corresponding USB type for the attached device. Then, the attached device can employ a big current as MAX as 2.4A to charge itself. CW3002 only changes the D+/D- voltage to suitable value for different devices; it does not control the charging current loop. The actual charge current is

determined by the power supply and the charge management IC in attached device.

SEL Pin

CW3002 uses a SEL pin to choose the different Apple charge current.

Pull low through a resistor less than (or equal to) $1k\Omega$ is for 1A option; Pull high or pull low through a resistor between $1M\Omega$ and $2M\Omega$ are all for 2.4A option.

SEL potential	Option	
1	2.4A	
0 (R < 1kΩ)	1A	
H $(1M\Omega < R < 2M\Omega)$	2.4A	

Table4. SEL pin for different current option

Application Circuits Q176490316 136 7023 2221

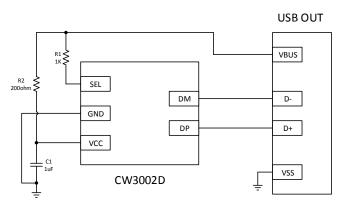


Fig3. 2.4A Configuration 1 / typical application circuits

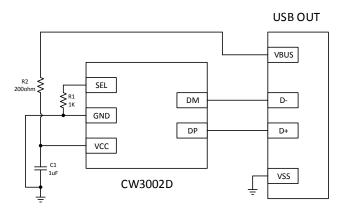
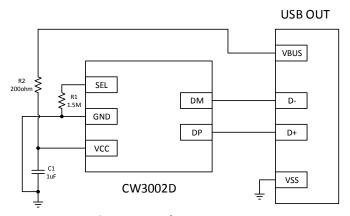
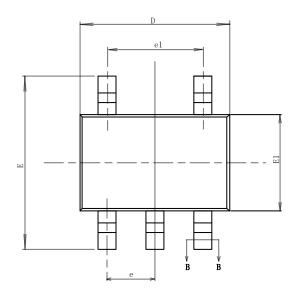
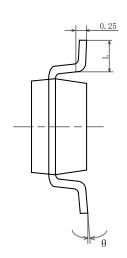
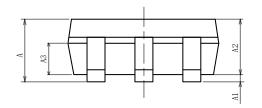
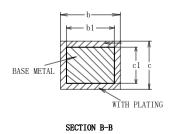


Fig4. 1A Configuration / typical application circuits


Fig5. 2.4A Configuration 2 / typical application circuits


Q176490316 136 7023 2221

Package Information Q176490316 136 7023 2221

SYMBOL	MILLIMETER			
STIVIBUL	MIN	TYP	MAX	
А			1.35	
A1	0.04	_	0.15	
A2	1.00	1.10	1.20	
A3	0.55	0.65	0.75	
b	0.38	_	0.48	
b1	0.37	0.40	0.43	
С	0.11		0.21	
c1	0.10	0.13	0.16	
D	2.72	2.92	3.12	
E	2.60	2.80	3.00	
E1	1.40 1.60 1.80			
е	0.95BSC			
e1	1.90BSC			
L	0.30 — 0.60			
θ	0		8°	
L/F size (mil)	47*47	_	46*64	