

36V Input, 3.5A output USB Charging Total Solution IC in QFN3x3-16

DESCRIPTION

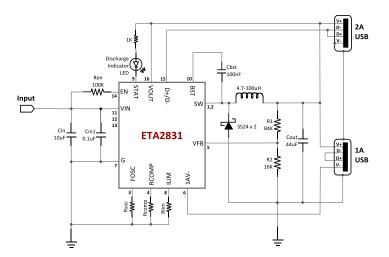
The ETA2831 is a total solution IC specifically for high voltage USB charging applications. It includes a wide input range, high-efficiency, and high frequency DC-to-DC step-down switching regulator that is capable of delivering up to 4A of output current and a low side USB current limiting switch. The DC-DC in ETA2831 is a current mode converter with a fixed-frequency that is externally adjustable. There is also a cable resistance compensation feature that allows users to adjust the output voltage to compensate for the voltage drop due to cable resistance.

An OVP function protects the IC itself and its downstream system against input voltage surges. With this OVP function, the IC can stand off input voltage as high as 42V, making it an ideal solution for industrial applications such as smart meters as well as automotive applications. In automotive systems, power comes from the battery, with its voltage typically ranges between 9V and 24V. Including cold crank and double battery jump-starts, the minimum input voltage may be as low as 4V and the maximum up to 36V, This makes ETA2831 ideal for the automotive application.

There is also a low side current limiting USB switch in ETA2831. The current limit is internally set at 1A. Since the total output current limit of the DCDC can be externally adjusted with a resistor, this IA USB switch provides flexible configurations for two-port USB charging system.

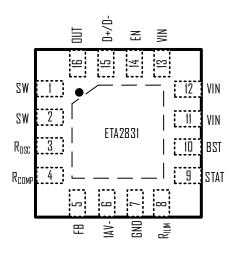
FEATURES

- Wide Input Operating Range from 4V to 36V
- Standoff Input Voltage: 42V
- High Efficiency at 12 V In 5 V Out: Up to 91%:
- High Efficiency PFM mode at light load
- Capable of Delivering 3.5A output current
- Peak Output Current up to 4A
- Cable resistance compensation
- Adjustable Switching frequency
- Adjustable Output current limit
- Frequency dithering Option for low EMI available
- Current Mode control
- Logic Control Shutdown
- Thermal shutdown and UVLO


APPLICATIONS

- Car Charge ports
- Multi-cell Li-ion Battery Charger

ORDERING INFORMATION


PART	PACKAGE	TOP MARK
ETA2831Q3Q-T	QFN3X3-16	ETA2831

TYPICAL APPLICATION

PIN CONFIGURATION

QFN3x3-16

ABSOLUTEMAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

IN Voltage	0.3V to 42V
SW, EN Voltage	0.3V toVIN+0.3V
BST Voltage	0.3V to SW+6V
Other Pins Voltage	0.3V to +0.3V
SW to ground current	Internally limited
Operating Temperature Range	40°C to 85°
Storage Temperature Range	55°C to 150°C
Thermal Resistance	θ JA
QFN3X3-16	
Lead Temperature (Soldering, 10ssec)	260°C
ESD HBM (Human Body Mode)	2KV
ESD MM (Machine Mode)	200V

ELECTRICAL CHACRACTERISTICS

(V_{IN} =12V, unless otherwise specified. Typical values are at TA = 25°C.)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	ZTINU
Input Standoff Voltage		42			٧
Input Voltage Range		4		36	٧
Input UVLO	Rising. Hysteresis=150mV		3.80		٧
Input OVP	Rising. Hysteresis=1.5V		37.5		٧
Input Supply Current	V _{FB} =0.85V. no switching		0.85	1	mA
Input Shutdown Current			6		μА
FB Voltage		0.776	0.800	0.824	V
FB Input Current		-1	0	1	μА
Switching Frequecy	R _{OSC} =200KΩ		500		KHZ
FoldBack Frequency	V _{FB} =0, R _{OSC} =200KΩ		125		KHZ
Maximum Duty Cycle	fosc < 600KHZ	90			%
High side Switch On Resistance	I _{SW} =200mA		100		mΩ
High side Switch Current Limit	R _{ILIM} =250KΩ		4		A
SW Leakage Current	VIN=12V,V _{SW} =0, EN= GND			10	μА
1AV- Drain Current Limit	V _{1AV-} =0.2V	1.05	1.2	1.35	A
1AV- Lower Side NMOS On Resistance	I _{IAV-} =1A		150		mΩ
1AV- Leakage Current	EN=GND	-1		1	μА
Ch+ C: U: +:	DN		0.5		ms
Short Circuit Hiccup time	OFF		100		ms
EN Input Current	VIN=12V, V _{EN} =5		0.1	5	μA

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
EN Input Low Voltage	Rising, Hysteresis=100mV	0.8	1.05	1.4	V
R _{DM} 1	D+/D- output impedance at	28	39	50	kΩ
	Divider Mode				
R _{DM} 2	D+/D- output impedance at	9	13	17	kΩ
	Samsung Mode				
Thermal Shutdown	Rising, Hysteresis=30°C		150		оС

PIN DESCRIPTION

PIN#	NAME	DESCRIPTION
1,2	SW	Inductor Connection. Connect an inductor between SW and the regulator output.
3	Rosc	Frequency Setting. Connect a resistor from this pin to GND to set the switching
		frequency.
4	RCOMP	Cable Resistance Compensation adjust pin. Connect a resistor from this pin to GND to
		compensate for voltage drop due to cord resistance
5	FB	Feedback Input. Connect an external resistor divider from the output to FB and GND to set
		VOUT
6	1AV-	Negative terminal of the 1A port
7	GND	Ground
8	RILIM	Current Limit Setting. Connect a resistor from this pin to GND to set the current limit
		value.
9	TATZ	Status display. It is low resistance when there is heavy load.
10	BST	Bootstrap pin. Connect a 100nF capacitor from this pin to SW
11,12,13	VIN	Supply Voltage. Bypass with a 10μF ceramic capacitor to GND
14	EN	Enable pin for the IC. Drive this pin high to enable the part, low to disable.
15	D+/D-	Connected to the D+ and D- line of USB connect, provide the correct voltage with attached
		portable equipment for USB Dedicated Charging Port (DCP) Emulator.
16	OUT	Output Voltage.

APPLICATION INFORMATION

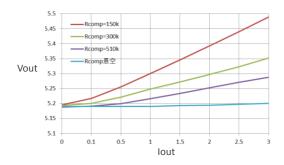
Peripheral Capacitor and Inductor Selection

Table 1 Recommended Perinherals

	19016 1 .1	verniiiieiinen i	ei ihiiei aiz	
Frequency (KHZ)	Cin (uF)	Cout (uF)	L(µH)	VOUT (V)
150	10	22x2	68-100	5
300	10	22x2	6.8-22	5
500	10	22x2	4.7-10	5
1000	10	22x2	2.2-4.7	5
2000	10	22x2	1.0	5

Setting the Switching Frequency

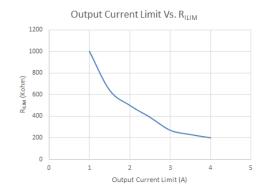
The ETA2831 uses a constant frequency PWM architecture that can be programmed to switch from 100kHz to 2MHz by using a resistor tied from the $R_{\rm OSC}$ pin to ground. A table showing the necessary $R_{\rm OSC}$ value for a desired switching frequency is below.


Table 2. SW Frequency vs Rosc Value

ROSC(kΩ)	f(kHZ)
82	1000
100	857
150	574
220	400
330	282
390	241
470	200
680	140

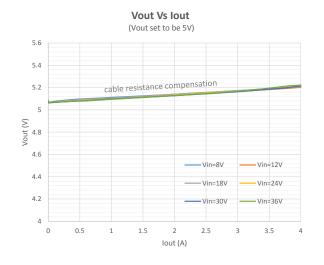
Cable Resistance compensation

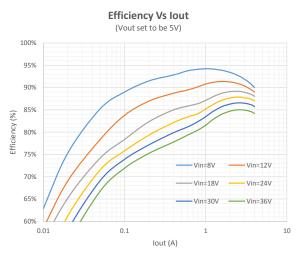
The ETA2831 has a cable cord resistance compensation feature to compensate the voltage drop due to cord resistance. The amount of added output voltage can be adjusted by an external resistor connected between RCOMP and GND pin.

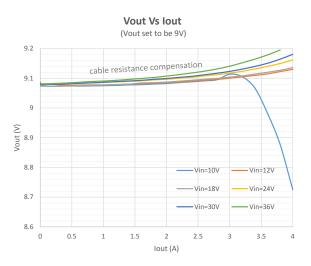

lout	Rcomp=150k	Rcomp=300k	Rcomp=510k
0	5.195	5.193	5.188
0.1	5.217	5.201	5.191
0.5	5.256	5.221	5.2
1	5.3	5.248	5.216
1.5	5.346	5.272	5.234
2	5.393	5.297	5.252
2.5	5.44	5.323	5.271
3	5.489	5.352	5.288

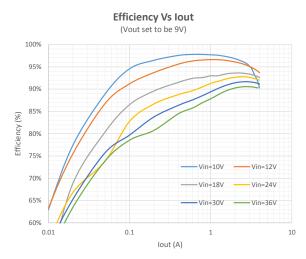
Setting of Output Current Limit

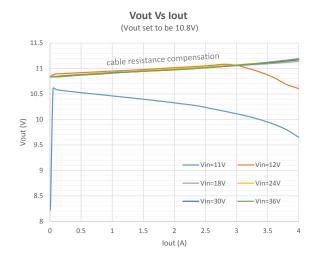
Given the input voltage, inductor value and oscillation frequency, the output current limit can be set by external resistor connected to R_{ILIM} pin. Several typical current limit setting is listed in following table at Vin=12V, f=300KHz and L=6.8uH.

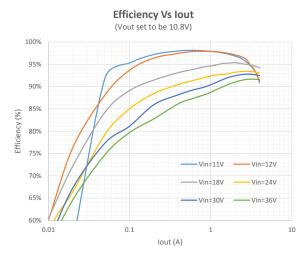

Output Current Limit (A)	R _{ILIM} (K)
1	1000
1.5	640
2	500
2.5	390
3	270
3.5	230
4	200

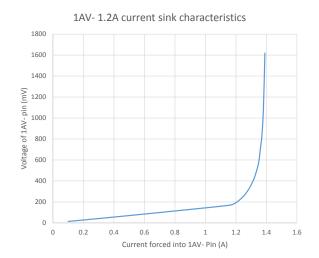


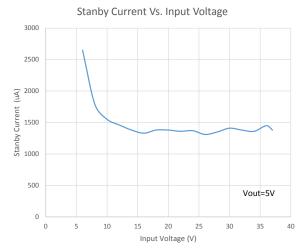


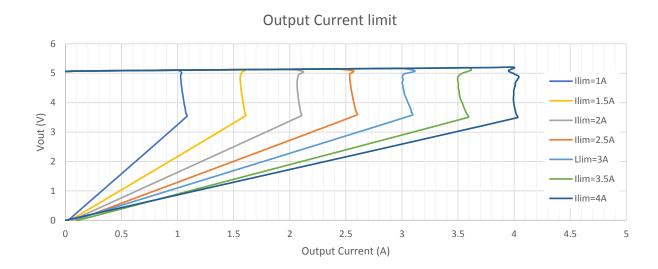

TYPICAL CHARACTERISTICS


(Vin=12V, Vout=5V, Rcomp=510ohm for cable resistance compensation, $T_A=25^{\circ}$ C, unless otherwise specified)

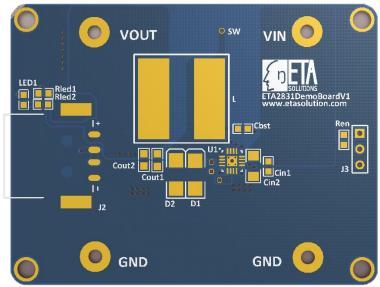






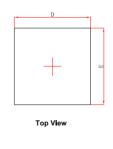


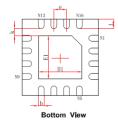
Output Current Limit Characteristic Vin=12V, Vout=5V, L=6.8uH, f=300KHz, Rcomp=510Kohm

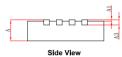


Heat Consideration and PCB Guideline

ETA2831 can deliver current up to 4A, and there will be a large amount of heat generated by the chip even though the efficiency is higher than 90% in most cases. Beside the ETA2831 itself, the 2 Schottky Diode (SBD) also generate a lot of heat. Please draw large heat sink area in PCB for ETA2831 and the 2 SBDs. In addition, 2 oz copper is recommended to be used on the PCB for better heat dissipation. Keeping SBDs and ETA2831 a little bit away from each other is also a good way to control the heat issue by having the heating source not too close to each other.




A picture of DEMO PCB is shown below. Please place the input capacitor (Cin1 and Cin2) as close to the chip as possible and placing this input capacitor is always the highest priority in drawing a PCB for ETA2831.



Package Outline

Package: QFN3*3_16

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203	0.203REF.		REF.
D	2.924	3.076	0.115	0.121
Е	2.924	3.076	0.115	0.121
D1	1.600	1.800	0.063	0.071
E1	1.600	1.800	0.063	0.071
k	0.200	OMIN.	0.008	BMIN.
р	0.180	0.280	0.007	0.011
е	0.500	0.500TYP.		TYP.
Ĺ	0.324	0.476	0.013	0.019