
Texas Instruments Inc., 2011 1

C28x Solar Library

v1.0

Jan-12

Module User’s Guide

C28x Foundation Software

Texas Instruments Inc., 2011 2

 IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgement, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such products or services might be or are used. TI’s
publication of information regarding any third party’s products or services does not constitute TI’s
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated TI product or service, is an unfair and deceptive business practice,
and TI is not responsible or liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters
stated by TI for that products or service voids all express and any implied warranties for the
associated TI product or service, is an unfair and deceptive business practice, and TI is not
responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2011, Texas Instruments Incorporated

Texas Instruments Inc., 2011 3

Trademarks

TMS320, C2000, Piccolo are the trademarks of Texas Instruments Incorporated.
All other trademarks mentioned herein are property of their respective companies

Acronyms

C28x: Refers to devices with the C28x CPU core.

IQmath: Fixed-point mathematical functions in C.

Q-math: Fixed point numeric format defining the binary resolution in bits.

Float: IEEE single precision floating point number

Texas Instruments Inc., 2011 4

Contents
Chapter 1. Introduction .. 5

1.1. Introduction ... 5

Chapter 2. Installing the Solar Library .. 6

2.1. Solar Library Package Contents ... 6

2.2. How to Install the Solar Library ... 6

Chapter 3. Module Summary ... 7

3.1. Solar Library Function Summary ... 7

Chapter 4. Solar Lib Modules .. 8

4.1. Maximum Power Point Tracking (MPPT) ... 8

MPPT_PNO .. 9

MPPT_INCC ... 13

4.2. Phase Locked Loop Modules ... 18

SPLL_1ph ... 18

4.3. Controller Modules ... 24

PID Grando ... 24

4.4. Math Modules.. 28

SineAnalyzer_diff .. 28

Chapter 5. Revision History ... 32

Texas Instruments Inc., 2011 5

Chapter 1. Introduction

1.1. Introduction

Texas Instruments Solar library is designed to enable flexible and efficient coding of systems
designed to use/process solar power using the C28x processor.

Solar applications need different software algorithms like maximum power tracking, phase lock
loop for grid synchronization, power monitoring etc. Several different algorithms have been
proposed in literature for the various tasks in a solar system. The Solar library provides a
framework structure with known algorithms for the user to implement Solar System quickly. The
source code for all the blocks is provided and hence the user can modify / enhance the modules
for use in their applications with C2000 family of devices microcontrollers.

Texas Instruments Inc., 2011 6

Chapter 2. Installing the Solar Library

2.1. Solar Library Package Contents

The TI Solar library consists of the following components:

• Header files consisting of the macro structure definition and macro code

• Documentation

2.2. How to Install the Solar Library

The Solar Library is distributed through the controlSUITE installer. The user must select the Solar
Library Checkbox to install the library in the controlSUITE directory. By default, the installation
places the library components in the following directory structure:

<base> install directory is C:\ti\controlSUITE\libs\app_libs\solar\vX.X

The following sub-directory structure is used:

<base>\float Contains floating point implementation of the solar library blocks

for floating point devices

<base>\IQ Contains fixed point implementation of the solar library blocks for

fixed point devices

<base>\doc Contains documentation for the library i.e. this file

Texas Instruments Inc., 2011 7

Chapter 3. Module Summary

3.1. Solar Library Function Summary

The Solar Library consists of modules than enable the user to implement digital control of solar
based systems. The following table lists the modules existing in the solar library and a summary
of cycle counts.

Module Name
Module
Type

Description Cycles
Multiple
Instance
Support

mppt_pno MPPT
Perturb and Observe MPPT
Algorithm Module

~93 Yes

mppt_incc MPPT
Incremental Conductance
MPPT Algorithm Module

~214 Yes

spll_1ph PLL
Software PLL for single phase
grid connected application

~139 Yes

pid_grando CNTL PID module ~80 Yes

SineAnalyzer_diff MATH
Calculate average and rms of a
sinusoidal signal

~40
(data buffering)
~231
(calculation)

Yes

Texas Instruments Inc., 2011 8

Chapter 4. Solar Lib Modules

4.1. Maximum Power Point Tracking (MPPT)

A simplistic model of a PV cell is given by Figure 1

LI
DI shI

shR

sR

I

U

Figure 1 PV Cell Model

From which the equation for the current from the PV cell is given by :

)1(

)(

−−=
+

nkT

IRVq

oL

s

eIII

Thus the V-I Curves for the solar cell is as shown Figure 2:

Figure 2 Solar Cell Characteristics

It is clear from the above V vs I curve that PV does not have a linear voltage and current
relationship. Thus (P vs V) curve clearly shows a presence of a maximum. To get the most
energy/utilization out of the PV system installation it must be operated at the maximum power
point of this curve. The maximum power point however is not fixed due to the non linear nature of

Texas Instruments Inc., 2011 9

the PV –cell and changes with temperature, light intensity etc and varies from panel to panel.
Thus different techniques are used to locate this maximum power point of the panel like Perturb
and Observe, incremental conductance. The C2000 Solar library consists of blocks that can be
used to track the MPP using well known MPP algorithms.

MPPT_PNO

Description: This software module implements the classical perturb and observe (P&O)
algorithm for maximum power point tracking purposes.

Macro File: mppt_pno.h

Technical: Tracking for Maximum power point is an essential part of PV system
implementation. Several MPP tracking methods have been implemented and
documented for PV systems. This software module implements a very widely
used MPP tracking method called “Perturb and Observe” algorithm. MPPT is
achieved by regulating the Panel Voltage at the desired reference value. This
reference is commanded by the MPPT P&O algorithm. The P&O algorithm
keeps on incrementing and decrementing the panel voltage to observe power
drawn change. First a perturbation to the panel reference is applied in one
direction and power observed, if the power increases same direction is
chosen for the next perturbation whereas if power decreases the perturbation
direction is reversed. For example when operating on the left of the MPP (i.e.
VpvRef < Vpv_mpp) increasing the VpvRef increases the power. Whereas
when on the right of the MPP(VpvRef>Vpv_mpp) increasing the VpvRef
decreases the power drawn from the panel. In Perturb and Observe (P&O)
method the VpvRef is perturbed periodically until MPP is reached. The
system then oscillates about the MPP. The oscillation can be minimized by
reducing the perturbation step size. However, a smaller perturbation size
slows down the MPPT in case of changing lighting conditions. Figure 3
illustrates the complete flowchart for the P&O MPPT algorithm

This module expects the following inputs:

1) Panel Voltage (Vpv): This is the sensed panel voltage signal sampled by
ADC and ADC result converted to normalized float format.

2) Panel Current (Ipv): This is the sensed panel current signal sampled by
ADC and ADC result converted to normalized float format.

Perturb and Observe MPPT Algorithm Module

Texas Instruments Inc., 2011 10

3) Step Size (Stepsize): Size of the step used for changing the MPP voltage
reference output, direction of change is determined by the slope
calculation done in the MPPT algorithm.

Upon Macro call – Panel power (P(k)=V(k)*I(k)) is calculated, and is
compared with the panel power obtained on the previous macro call. The
direction of change in power determines the action on the voltage output
reference generated. If current panel power is greater than previous power
voltage reference is moved in the same direction, as earlier. If not, the
voltage reference is moved in the reverse direction.

This module generates the following Outputs:

1) Voltage reference for MPP (VmppOut): Voltage reference for MPP
tracking obtained by incremental conductance algorithm. Output is in
float format.

Sample Inputs

V=Vpv, I=Ipv

Calculate Power

P(n) = V * I

Increment

VmppOut
Decrement

VmppOut

Decrement

VmppOut

Increment

VmppOut

P(n) > P(n-1)

V > V(n-1) V > V(n-1)

Return

V(n-1) = V

P(n-1) = P(n)

Yes
No

Yes YesNoNo

Figure 3 Perturb & Observe Algorithm Flowchart for MPPT

Texas Instruments Inc., 2011 11

Object Definition:

typedef struct { float Ipv;

 float Vpv;

 float DeltaPmin;

 float MaxVolt;

 float MinVolt;

 float Stepsize;

 float VmppOut;

 // internal variables

 float DeltaP;

 float PanelPower;

 float PanelPower_Prev;

 Uint16 mppt_enable;

 Uint16 mppt_first;

 } mppt_pno;

Special Constants and Data types

mppt_pno
The module definition is created as a data type. This makes it convenient to instance an
interface to the mppt_pno module. To create multiple instances of the module simply
declare variables of type mppt_pno.

mppt_pno_DEFAULTS
Structure symbolic constant to initialize mppt_pno module. This provides the initial values
to the terminal variables as well as method pointers.

Module interface Definition:

Net name Type Description Acceptable
Range

Vpv Input Panel Voltage input
Float [0,1)

Ipv Input Panel Current input

Float
[0,1)

StepSize Input
Step size input used for changing reference
MPP voltage output generated

Float
[0,1)

DeltaPmin Input
Threshold limit of power change for which
perturbation takes place.

Float [0,1)

MaxVolt Input
Upper Limit on the voltage reference value
generated by MPPT algorithm – max value of
VmppOut

Float[0,1)

MinVolt Input
Lower Limit on the voltage reference value
generated by MPPT algorithm – Min value of
VmppOut

Float[0,1)

VmppOut Output MPPT output voltage reference generated Float[0,1)

DeltaP Internal Change in Power

Float(-1,1)

Texas Instruments Inc., 2011 12

PanelPower Internal

Latest Panel power calculated from Vpv and
Ipv

Float[0,1)

PanelPower_prev Internal Previous value of Panel Power

Float[0,1)

mppt_enable
Internal

Flag to enable mppt computation – enabled
by default

Uint16

mppt_first

Internal
Flag to indicate mppt macro is called for the
first time. Used for setting initial values for
vref.

Uint16

Usage: This section explains how to use this module.

Step 1 Add library header file in the file {ProjectName}-Includes.h

#include “mppt_pno.h”

Step 2 Creation of macro structure in C file {ProjectName}-Main.c

mppt_pno mppt_pno1 = mppt_pno_DEFAULTS;

Step 4 Input initialization in C file {ProjectName}-Main.c

 //mppt pno macro initializations

 mppt_pno1.DeltaPmin = 0.00001;

 mppt_pno1.MaxVolt = 0.9;

 mppt_pno1.MinVolt = 0.0;

 mppt_pno1.Stepsize = 0.005;

Step 5 Using the Macro in MPPT Task – MPPT is run at a slower rate generally, the MPPT

macro is called after inputting the panel current and the panel voltage scaled values into the
MPPT structure.

// Write normalized panel current and voltage values

// to the MPPT macro

mppt_pno1.Ipv = IpvRead; \\ Normalized Panel Current

 mppt_pno1.Vpv = VpvRead; \\ Normalized Panel Voltage

// Invoking the MPPT computation macro

mppt_pno_MACRO (mppt_pno1);

// Output of the MPPT macro can be written to the reference of

// the voltage regulator

 Vpvref_mpptOut = mppt_pno1.VmppOut;

Texas Instruments Inc., 2011 13

MPPT_INCC

Description: This software module implemented the incremental conductance algorithm
used for maximum power point tracking purposes.

Macro File: mppt_incc.h

Technical: Tracking for Maximum power point is an essential part of PV system
implementation. Several MPP tracking methods have been implemented and
documented in PV systems. This software module implements a very widely
used MPP tracking method called “Incremental Conductance” algorithm. The
incremental conductance (INCC) method is based on the fact that the slope
of the PV array power curve is zero at the MPP, positive on the left of the
MPP, and negative on the right.

 VIVI // −=∆∆ , At MPP

VIVI // −<∆∆ , Right of MPP

VIVI // −>∆∆ , Left of MPP

 The MPP can thus be tracked by comparing the instantaneous conductance

(I/V) to the incremental conductance (VI ∆∆ /) as shown in the flowchart in

below. Vref is the reference voltage at which the PV array is forced to
operate. At the MPP, Vref equals to VMPP of the panel. Once the MPP is
reached, the operation of the PV array is maintained at this point unless a

change in I∆ is noted, indicating a change in atmospheric conditions and
hence the new MPP. Figure 4 illustrates the flowchart for the incremental
conductance method. The algorithm decrements or increments Vref to track
the new MPP.

This module expects the following basic inputs:

1) Panel Voltage (Vpv): This is the sensed panel voltage signal
sampled by ADC and ADC result converted to normalized float
format.

2) Panel Current (Ipv): This is the sensed panel current signal sampled
by ADC and ADC result converted to normalized float format.

3) Step Size (Stepsize): Size of the step used for changing the MPP
voltage reference output, direction of change is determined by the
slope calculation done in the MPPT algorithm.

Incremental Conductance Method for MPPT

Texas Instruments Inc., 2011 14

The increment size determines how fast the MPP is tracked. Fast tracking
can be achieved with bigger increments but the system might not operate
exactly at the MPP and oscillate about it instead; so there is a tradeoff.

Upon Macro call – change in the Panel voltage and current inputs is
calculated, conductance and incremental conductance are determined for the
given operating conditions. As per the flowchart below – voltage reference for
MPP tracing is generated based on the conductance and incremental
conductance values calculated.

This module generates the following Outputs:

1) Voltage reference for MPP (VmppOut): Voltage reference for MPP
tracking obtained by incremental conductance algorithm. Output in
normalized float format.

Figure 4 Incremental Conductance Method Flowchart

Texas Instruments Inc., 2011 15

Object Definition:

typedef struct { float Ipv;
 float Vpv;
 float IpvH;
 float IpvL;
 float VpvH;
 float VpvL;
 float MaxVolt;
 float MinVolt;
 float Stepsize;
 float VmppOut;
 // internal variables
 float Cond;
 float IncCond;
 float DeltaV;
 float DeltaI;
 float VpvOld;
 float IpvOld;
 Uint16 mppt_enable;
 Uint16 mppt_first;
 } mppt_incc;

Special Constants and Data types

mppt_incc
The module definition is created as a data type. This makes it convenient to instance an
interface to the mppt_incc module. To create multiple instances of the module simply
declare variables of type mppt_incc.

mppt_incc_DEFAULTS
Structure symbolic constant to initialize mppt_incc module. This provides the initial values
to the terminal variables as well as method pointers.

Module interface Definition:

Net name Type Description Acceptable
Range

Vpv Input Panel Voltage input
Float[0,1)

Ipv Input Panel Current input
Float[0,1)

StepSize Input
Step size input used for changing reference MPP
voltage output generated

Float[0,1)

VpvH Input
Threshold limit for change in voltage in +ve
direction

Float[0,1)

VpvL Input
Threshold limit for change in voltage in -ve
direction

Float[0,1)

IpvH Input
Threshold limit for change in Current in +ve
direction

Float[0,1)

Texas Instruments Inc., 2011 16

IpvL Input
Threshold limit for change in Current in -ve
direction

Float[0,1)

MaxVolt Input
Upper Limit on the voltage reference value
generated by MPPT algorithm – max value of
VmppOut

Float[0,1)

MinVolt Input
Lower Limit on the voltage reference value
generated by MPPT algorithm – Min value of
VmppOut

Float[0,1)

VmppOut Output MPPT output voltage reference generated
Float[0,1)

Cond Internal Conductance value calculated

Float

IncCond
Internal Incremental Conductance value calculated

Float

DeltaV
Internal Change in Voltage

Float[0,1)

DeltaI
Internal Change in Current

Float[0,1)

VpvOld
Internal Previous value of Vpv

Float[0,1)

IpvOld
Internal Previous value of Ipv

Float[0,1)

mppt_enable
Internal

Flag to enable mppt computation – enabled by
default

Uint16

mppt_first Internal

Flag to indicate mppt macro is called for the first
time. Used for setting initial values for vref.

Uint16

Usage: This section explains how to use this module.

Step 1 Add library header file in the file {ProjectName}-Includes.h

#include “mppt_incc.h”

Step 2 Creation of macro structure in C file {ProjectName}-Main.c

mppt_incc mppt_incc1 = mppt_incc_DEFAULTS;

Step 4 Input initialization in C file {ProjectName}-Main.c

 //mppt incc macro initializations

 mppt_incc1.IpvH = 0.0001;

 mppt_incc1.IpvL = -0.0001;

 mppt_incc1.VpvH = 0.0001;

 mppt_incc1.VpvL = -0.0001;

 mppt_incc1.MaxVolt = 0.9;

 mppt_incc1.MinVolt = 0.0;

Texas Instruments Inc., 2011 17

 mppt_incc1.Stepsize = 0.005;

 mppt_incc1.mppt_first=1;

 mppt_incc1.mppt_enable=0;

Step 5 Using the Macro in MPPT Task – MPPT is run at a slower rate generally, the MPPT macro is

called after inputting the panel current and the panel voltage scaled values into the MPPT structure.

// Write normalized panel current and voltage values

// to the MPPT macro

mppt_incc1.Ipv = IpvRead; \\ Normalized Panel Current

 mppt_incc1.Vpv = VpvRead; \\ Normalized Panel Voltage

// Invoking the MPPT computation macro

mppt_incc_MACRO (mppt_incc1);

// Output of the MPPT macro can be written to the reference of

// the voltage regulator

 Vpvref_mpptOut = mppt_incc1.VmppOut;

Texas Instruments Inc., 2011 18

4.2. Phase Locked Loop Modules

SPLL_1ph

Description: This software module implemented a software phase lock loop to calculate
the instantaneous phase of a single phase grid. It also computed the sine
and cosine values of the grid that are used in the closed loop control.

Macro File: SPLL_1ph.h

Technical: The phase angle of the utility is a critical piece of information for operation of
power devices feeding power into the grid like PV inverters. A phase locked
loop is a closed loop system in which an internal oscillator is controlled to
keep the time/phase of an external periodical signal using a feedback loop.
The PLL is simply a servo system which controls the phase of its output
signal such that the phase error between the output phase and the reference
phase is minimum. The quality of the lock directly effects the performance of
the control loop of grid tied applications. As Line notching, voltage
unbalance, line dips, phase loss and frequency variations are common
conditions faced by equipment interfacing with electric utility the PLL needs
to be able to reject these sources of error and maintain a clean phase lock to
the grid voltage.

 A functional diagram of a PLL is shown in the Figure 5, which consists of a
phase detect(PD), a loop filter(LPF) and a voltage controlled oscillator(VCO)

oω

)sin(ingridvv θ= ε
∫+

ip
kk

dv outω
outθ

'
v

Figure 5 Phase Lock Loop Basic Structure

A sinusoidal measured value of the gird is given by,

)sin()sin(gridgridgridingrid twvvv θθ +==

Now let the VCO output be,

Software Phase Lock Loop for Single Phase Grid Tied Systems

Texas Instruments Inc., 2011 19

)cos()cos('

PLLPLLout twv θθ +==

Phase Detect block multiplies the VCO output and the measured input value to
get,

))]()sin(())()[sin((
2

PLLgridPLLgridPLLgridPLLgrid

gridd

d twwtww
vK

v θθθθ ++++−+−=

The output of PD block has information of the phase difference. However it has a
high frequency component as well.

Thus the second block the loop filter, which is nothing but a PI controller is used
which to low pass filter the high frequency components. Thus the output of the PI
is

))()sin((
2

PLLgridPLLgrid

gridd

d tww
vK

v θθ −+−=

For steady state operation, ignore the PLLgrid ww − term, and θθ =)sin(the

linearized error is given as,

2

)(PLLgridgridv
err

θθ −
=

Small signal analysis is done using the network theory, where the feedback loop
is broken to get the open loop transfer equation and then the closed loop transfer
function is given by

Closed Loop TF = Open Loop TF / (1+ OpenLoopTF)

Thus the PLL transfer function can be written as follows

Closed loop Phase TF:

i

p

gridpgrid

i

p

pgrid

in

out

o

T

k
vskvs

T

k
skv

sLFs

sLF

s

s
sH

++

+

=
+

==
2

)(

)(

)(

)(

)(
)(

θ

θ

Closed loop error transfer function:

i

p

p

o

in

d

o

T

k
sks

s

sLFs

s
sH

s

sV
sE

++

=
+

=−==
2

2

)(
)(1

)(

)(
)(

θ

The closed loop phase transfer function represents a low pass filter
characteristics, which helps in attenuating the higher order harmonics. From the
error transfer function it is clear that there are two poles at the origin which
means that it is able to track even a constant slope ramp in the input phase angle
without any steady state error.

Texas Instruments Inc., 2011 20

Comparing the closed loop phase transfer function to the generic second order
system transfer function

22

2

2

2
)(

nn

nn

ss

s
sH

ωξω

ωξω

++

+
=

Now comparing this with the closed loop phase transfer function, we can get the
natural frequency and the damping ration of the linearalized PLL.

i

pgrid

n
T

Kv
=ω

4

pigrid KTv
=ξ

Note in the PLL the PI serves dual purpose
1. To filter out high frequency which is at twice the frequency of the carrier/grid
2. Control response of the PLL to step changes in the grid conditions i.e. phase

leaps, magnitude swells etc.

Now if the carrier is high enough in frequency, the low pass characteristics of the
PI are good enough and one does not have to worry about low frequency
passing characteristics of the LPF and only tune for the dynamic response of the
PI. However as the grid frequency is very low (50Hz-60Hz) the roll off provided
by the PI is not satisfactory enough and introduces high frequency element to the
loop filter output which affects the performance of the PLL.

Therefore a notch filter is used at the output of the Phase Detect block which
attenuates the twice the grid frequency component very well.

oω

)sin(ingridvv θ= ε
∫+ ip kk

dv

outω
outθ

'
v

Figure 6 Single Phase PLL with Notch Filter

In this case the PI tuning can be done solely based on dynamic response of the
PLL and not worry about the LPF characteristics.

The software module provides the structure for a software based PLL to be used
in a single phase grid tied application using the method described in Figure 6.

Texas Instruments Inc., 2011 21

The coefficients for lock to both 60Hz and 50Hz single phase grid are provided in
the module.

Object Definition:

typedef struct{

 float B2_notch;

 float B1_notch;

 float B0_notch;

 float A2_notch;

 float A1_notch;

}SPLL_NOTCH_COEFF;

typedef struct{

 float B1_lf;

 float B0_lf;

 float A1_lf;

}SPLL_LPF_COEFF;

typedef struct{

 float AC_input; //INPUT: 1ph AC Signal measured

 float wn; //INPUT: Grid Frequency in radians/sec

 float theta[2]; //OUTPUT: grid phase angle

 float Mycos[2]; //OUTPUT: Cos(grid phase angle)

 float Mysin[2]; //OUTPUT: Sin(grid phase angle)

float wo; //INTERNAL: Instantaneous Grid Freq in rad/s

 SPLL_NOTCH_COEFF notch_coeff; //INTERNAL: Notch Filter Coeff.

 SPLL_LPF_COEFF lpf_coeff; //INTERNAL: Loop Filer Coeff.

 float Upd[3]; //INTERNAL: phase detect buffer

 float ynotch[3]; //INTERNAL: notch output buffer

 float ylf[2]; //INTERNAL: Loop Filter buffer

 float delta_t; //INTERNAL: 1/Freq PLL routine exec

}SPLL;

Special Constants and Data types

SPLL_1ph The module definition is created as a data type. This makes it convenient to
instance an interface to the SPLL_1ph module. To create multiple instances of the
module simply declare variables of type SPLL_1ph.

Texas Instruments Inc., 2011 22

Module interface Definition:

Net name Type Description Acceptable
Range

AC_input Input 1ph AC Signal measured and normalized
Float(-1,1)

wn Input Grid Frequency in radians/sec
Float

theta[2] Output grid phase angle
Float
(-2*pi, 2*pi)

cos[2] Output Cos(grid phase angle) Float (-1,1)

sin[2] Output Sin(grid phase angle) Float (-1,1)

wo Internal Instantaneous Grid Frequency in radians/sec Float

notch_coeff Internal Notch Filter Coefficients Float

lpf_coeff Internal Loop Filer Coefficients Float

Upd[3] Internal Internal Data Buffer for phase detect output Float

ynotch[3] Internal Internal Data Buffer for the notch output Float

ylf Internal Internal Data Buffer for Loop Filter output Float

delta_t Internal 1/Frequency of calling the PLL routine Float

Usage: This section explains how to use this module.

Step 1 Add library header file in the file {ProjectName}-Includes.h

#include “SPLL_1ph.h”

Step 2 Creation of macro structure in C file {ProjectName}-Main.c

// ------------- Software PLL for Grid Tie Applications ----------

SPLL_1ph spll1;

Step 4 Initialization in C file {ProjectName}-Main.c , where the inputs to the initialization

function are the grid frequency (50/60Hz), the inverter ISR period value and the address of the pll
object. The routine initializes all the internal data buffers and variables, and sets the coefficients
of the notch filter according to the grid frequency.

SPLL_1ph_init(60,(0.00005),&spll1);

Texas Instruments Inc., 2011 23

Step 5 Using the SPLL macro in the Inverter ISR– MPPT is run at a slower rate generally,

the MPPT macro is called after inputting the panel current and the panel voltage scaled values
into the MPPT structure.

// SPLL call

spll1.AC_input=Vac_in;

SPLL_run(&spll1);

InvSine =(spll1.sin[0]);

Texas Instruments Inc., 2011 24

4.3. Controller Modules

PID Grando

Description: This software module implemented the incremental conductance algorithm
used for maximum power point tracking purposes.

.Out

.Ref

.Fdbk

PID_Grando

(struct)

DBUFF

Coef

Macro File: pid_grando.h

Technical: The PID_grando module implements a basic summing junction and PID control
law with the following features: � Programmable output saturation � Independent reference weighting on proportional path � Independent reference weighting on derivative path � Anti-windup integrator reset � Programmable derivative filter

All input, output and internal data is in normalized floating point value. A block
diagram of the internal controller structure is shown in Figure 7.

The code is supplied as a C macro in a single header file named
“PID_grando.h”. The controller variables are grouped into three short C

structures as follows.

1. Terminals
Ref // Input: reference set-point
Fdb // Input: feedback
Out // Output: controller output
c1 // Internal: derivative filter coefficient
c2 // Internal: derivative filter coefficient
2. Parameters
Kr // Parameter: proportional reference
Kp // Parameter: proportional loop gain
Ki // Parameter: integral gain
Kd // Parameter: derivative gain
Km // Parameter: derivative reference weighting
Umax // Parameter: upper saturation limit
Umin // Parameter: lower saturation limit
3. Data
up // Data: proportional term
ui // Data: integral term

 PID regulator

Texas Instruments Inc., 2011 25

ud // Data: derivative term
v1 // Data: pre-saturated controller output
i1 // Data: integrator storage: ui(k-1)
d1 // Data: differentiator storage: ud(k-1)
d2 // Data: differentiator storage: d2(k-1)
w1 // Data: saturation record: [u(k-1) - v(k-1)]

Figure 7 PID Grando Internal
a) Proportional path
The proportional term is taken as the difference between the reference and feedback
terms. A feature of this controller is that sensitivity to the reference input can be weighted
differently to the feedback path. This provides an extra degree of freedom when tuning
the controller response to a dynamic input. The proportional law is:

Note that “proportional” gain is applied to the sum of all three terms and will be described
in section d).

b) Integral path
The integral path consists of a discrete integrator which is pre-multiplied by a term
derived from the output module. The term w1 is either zero or one, and provides a means
to disable the integrator path when output saturation occurs. This prevents the integral
term from “winding up” and improves the response time on recovery from saturation. The
integrator law used is based on a backwards approximation.

c) Derivative path
The derivative term is a backwards approximation of the difference between the current
and previous inputs. The input is the difference between the reference and feedback
terms, and like the proportional term, the reference path can be weighted independently
to provide an additional variable for tuning. A first order digital filter is applied to the
derivative term to reduce nose amplification at high frequencies. Filter cutoff frequency is
determined by two coefficients (c1 & c2). The derivative law is shown below.

Texas Instruments Inc., 2011 26

d) Output path
The output path contains a multiplying term (Kp) which acts on the sum of the three
controller parts. The result is then saturated according to user programmable upper and
lower limits to give the output term. The pre-and post-saturated terms are compared to
determine whether saturation has occurred, and if so, a zero or one term is produced
which is used to disable the integral path (see above). The output path law is defined as
follows.

Object Definition:

typedef struct {

float Ref; // Input: reference set-point

 float Fbk; // Input: feedback

 float Out; // Output: controller output

 float c1; // Internal: derivative filter coefficient 1

 float c2; // Internal: derivative filter coefficient 2

 } PID_GRANDO_TERMINALS;

// note: c1 & c2 placed here to keep structure size under 8 words

typedef struct {

float Kr; // Parameter: reference set-point weighting

 float Kp; // Parameter: proportional loop gain

 float Ki; // Parameter: integral gain

 float Kd; // Parameter: derivative gain

 float Km; // Parameter: derivative weighting

 float Umax;// Parameter: upper saturation limit

 float Umin;// Parameter: lower saturation limit

 } PID_GRANDO_PARAMETERS;

typedef struct {

float up; // Data: proportional term

 float ui; // Data: integral term

 float ud; // Data: derivative term

 float v1; // Data: pre-saturated controller output

 float i1; // Data: integrator storage: ui(k-1)

 float d1; // Data: differentiator storage: ud(k-1)

 float d2; // Data: differentiator storage: d2(k-1)

 float w1; // Data: saturation record: [u(k-1) - v(k-1)]

 } PID_GRANDO_DATA;

typedef struct { PID_GRANDO_TERMINALS term;

 PID_GRANDO_PARAMETERS param;

 PID_GRANDO_DATA data;

 } PID_GRANDO_CONTROLLER;

Special Constants and Data types

PID_GRANDO_CONTROLLER
The module definition is created as a data type. This makes it convenient to instance an
interface to the pid_grando module. To create multiple instances of the module simply
declare variables of type pid_grando_controller.

PID_TERM_DEFAULTS, PID_PARAM_DEFAULTS, PID_DATA_DEFAULTS
Default values for initializing the PID structure

Texas Instruments Inc., 2011 27

Usage: This section explains how to use this module.

Step 1 Add library header file in the file {ProjectName}-Includes.h

#include “pid_grando.h”

Step 2 Creation of macro structure in C file {ProjectName}-Main.c

PID_GRANDO_CONTROLLER pidGRANDO_Iinv = {PID_TERM_DEFAULTS,

PID_PARAM_DEFAULTS, PID_DATA_DEFAULTS};

Step 4 Input initialization in C file {ProjectName}-Main.c

 pidGRANDO_Iinv.param.Kp=0.8;

 pidGRANDO_Iinv.param.Ki=(0.15);

 pidGRANDO_Iinv.param.Kd=(0.0);

 pidGRANDO_Iinv.param.Kr=(1.0);

 pidGRANDO_Iinv.param.Umax=(1.0);

 pidGRANDO_Iinv.param.Umin=(-1.0);

Step 5 Using the Macro in ISR Task –

// Using PID Grando Module

pidGRANDO_Iinv.term.Fbk=inv_meas_cur_inst;

pidGRANDO_Iinv.term.Ref=inv_ref_cur_inst;

PID_GR_MACRO(pidGRANDO_Iinv);

Texas Instruments Inc., 2011 28

4.4. Math Modules

SineAnalyzer_diff

Description: This software module analyzes the input sine wave and calculates several
parameters like RMS, Average and Frequency.

Macro File: SineAnalyzer_diff.h

Technical: This module accumulates the sampled sine wave inputs, checks for
threshold crossing point and calculates the RMS, Average values of the input
sine wave. This module can also calculate the Frequency of the sine wave
and indicate zero (or threshold) crossing point.

This module expects the following inputs:

2) Sine wave (Vin): This is the signal sampled by ADC and ADC result
converted to normalized float format with offset applied for the swing fo
the signal to be from -1 to 1 for full scale ADC reading.

3) Threshold Value (Threshold): Threshold value is used for detecting the
cross over of the input signal across the threshold value set, in float
format. By default threshold is set to Zero.

4) Sampling Frequency (SampleFreq): This input should be set to the
Frequency at which the input sine wave is sampled, and the sine
analyzer block is called.

Upon Macro call – Input sine wave (Vin) is checked to see if the signal
crossed over the threshold value. Once the cross over event happens,
successive Vin samples are accumulated until occurrence of another
threshold cross over point. Accumulated values are used for calculation of
Average, RMS values of input signal. Module keeps track of number of
samples between two threshold cross over points and this together with the
signal sampling frequency (SampleFreq input) is used to calculate the
frequency of the input sine wave.

This module generates the following Outputs:

4) RMS value of sine wave (Vrms): Output reflects the RMS value of
the sine wave input signal. RMS value is calculated and updated at
every threshold crossover point.

5) Average value of sine wave (Vrms): Output reflects the Average
value of the sine wave input signal. Average value is calculated and
updated at every threshold crossover point.

Computes rms and avg value of a sinusoidal signal

Texas Instruments Inc., 2011 29

6) Signal Frequency (SigFreq): Output reflects the Frequency of the
sine wave input signal. Frequency is calculated and updated at every
threshold crossover point.

Vin

In

SineAnalyzer – RMS

calculation

Vrms
AC Normalized

Value

RMS Value of sine
wave

Threshold

N

Vin∑ 2

∑ 2
Vin

N

)(∑ Vinabs

Vin

In

SineAnalyzer –

Frequency calculation

SigFreq

ZCDSampled Rect. AC
Frequency of sine

wave

Threshold

nSamples

++ nSamples

eqSamplingFr

Object Definition:

typedef struct{ float Vin; //Input: Sine Signal

 float SampleFreq;//Input: Signal Sampling Freq

 float Threshold; //Input: threshold value

 float Vrms; // Output: RMS Value

 float Vavg; // Output: Average Value

 float SigFreq; // Output: Signal Freq

 Uint16 ZCD; // Output: Zero Cross detected

 // internal variables

 float Vacc_avg ;

 float Vacc_rms ;

 float curr_sample_norm;

 Uint16 prev_sign ;

 Uint16 curr_sign ;

 Uint32 nsamples ;

 float inv_nsamples;

 float inv_sqrt_nsamples;

 } SineAnalyzer_diff;

Special Constants and Data types

Texas Instruments Inc., 2011 30

SineAnalyzer_diff
The module definition is created as a data type. This makes it convenient to instance an
interface to the Sine Analyzer module. To create multiple instances of the module simply
declare variables of type SineAnalyzer.

SineAnalyzer _DEFAULTS
Structure symbolic constant to initialize SineAnalyzer module. This provides the initial
values to the terminal variables as well as method pointers.

Module interface Definition:

Net name Type Description Acceptable
Range

Vin Input Sampled Sine Wave input
Float(-1,1)

Threshold Input
Threshold to be used for cross over
detection

Float(-1,1)

SampleFreq Input
Frequency at which the Vin (input sine
wave) is sampled, in Hz

Float

Vrms Output
RMS value of the sine wave input (Vin)
updated at cross over point

Float

Vavg Output
Average value of the sine wave input (Vin)
updated at cross over point

Float

SigFreq Output
Frequency of the sine wave input (Vin)
updated at cross over point

Float

ZCD Output
When ‘I’ - indicates that Cross over
happened and stays high till the next call of
the macro.

Uint16

Vacc_avg Internal
Used for accumulation of samples for
Average value calculation

Float

Vacc_rms Internal
Used for accumulation of squared samples
for RMS value calculation

Float

Nsamples Internal
Number of samples between two crossover
points

Int32

inv_nsamples Internal Inverse of nsamples Float

inv_sqrt_nsamples Internal Inverse square root of nsamples Float

Prev_sign,
Curr_sign

Internal Used for calculation of cross over detection Int16

Texas Instruments Inc., 2011 31

Usage: This section explains how to use this module.

Step 1 Add library header file in the file {ProjectName}-Includes.h

#include “SineAnalyzer_diff.h”

Step 2 Creation of macro structure in C file {ProjectName}-Main.c

// ------------- Sine Analyzer Block to measure RMS, frequency and ZCD

SineAnalyzer_diff sine_mainsV = SineAnalyzer_diff_DEFAULTS;

Step 4 Input initialization in C file {ProjectName}-Main.c

//sine analyzer initialization

sine_mainsV.Vin=0;

sine_mainsV.SampleFreq=20000.0;

sine_mainsV.Threshold=0.0;

Step 5 Using the Macro in Inverter Task

// --

// Connect inputs, compute RMS, Avg, Freq & ZCD

// --

sine_mainsV.Vin =Vac_in;

SineAnalyzer_diff_MACRO (sine_mainsV);

VrmsReal = (KvInv* sine_mainsV.Vrms);

Texas Instruments Inc., 2011 32

Chapter 5. Revision History

Version Date Notes

V1.0 Jan, 31 2011 First Release of Solar Library

