Chipown

标题	基于 PN8370 的 5V2A 电源应用方案
规格	输入电压: 90~265Vac 输出功率: 10W 输出特性: 5.0V/2.0A
应用范围	充电器、适配器、内置电源
文件编号	DER-8370-15-P021
编写时间	2015-05-20
编写部门	应用二部
版本号	V1.1

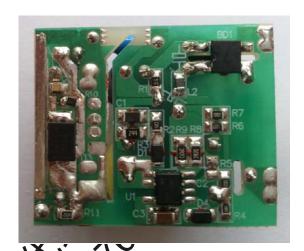
n**/ 性概述:**·双面板设计,单面元器件,面积: 31.4mm*38.0mm
·输入电压: 90~265Vac;
·输出功率: 10W(Typical);
·待机功耗: <50mW
·拥有可输出短路保护,输出过流 过压保护,FB 分压电阻开路短路保护,以及电流侦 测电阻 Rcs 短路和过温保护:

·平均效率: ≥78.70%;

内容目录

1.	电源介绍	2
2.	电源规格明细	2
3.	电源原理图	3
4.	电路描述	3
5.	元件清单	4
6.	变压器规格	5
7.	输入输出特性和工作波形	7
8.	EMC 测试	17
0	附录	21

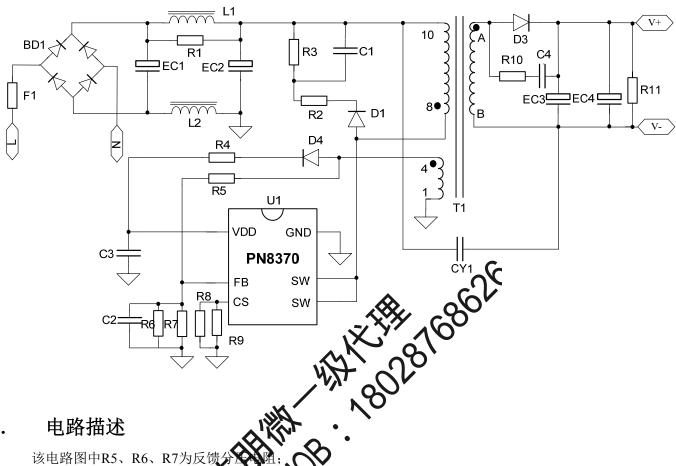
Chipown


1. 电源介绍

该报告提供了一种基于 PN8370 设计输出 5.0V/2.0A 的开关电源。

该报告包含了原理图、电源输入输出规格、BOM表、变压器参数、安规和 EMI 测试数据等资料。

以下为该电源的实物图片:


2. 电源规格明细

项目描述 备注 Max Unit 输入 230 265 V 5.0 V 输出 2.0 A 输出功率 10 W 待机功耗 50 mW Io=0A 平均效率 78.70 % 满足六级能效要求 η 工作环境 Tamb -10 25 $^{\circ}$ C 外部环境 40

Chipown

电源原理图

4.

该电路图中R5、R6、R7为反 D1、R2、R3、C1 组成 RCD 吸收功率 Mos(集成于 PN8370 内部)漏源端尖锋电压,

可以视情况予以减轻。

mS 以内完全启动; PN8370 内置高压启动功能,

PN8370 本体温度太高时, OTP 保护功能会及时动作,关闭 IC,以保护整个系统,温度下降之 后在自动重启;

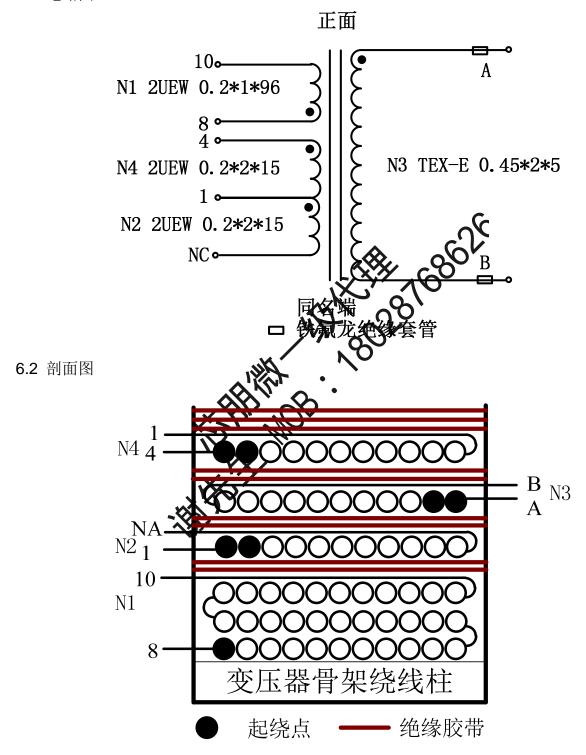
电路具有输出短路保护,输出过流保护,开环保护, VDD 过压保护等功能,以提高整个系统的可靠性; 当连接到反馈脚 FB 的分压电阻开路或短路时,系统都会进入保护状态;

当 CS 脚短路(或 Res 短路)时系统会发生保护并进入 Latch 状态,以确保系统不会被损坏;

CE1、L1、CE2 组成π性滤波,以改善EMI性能;

Chipown

5. 元件清单


序号	元件标号	元件名称	元件型号	封装尺寸	数量	备注
1	BD1	整流桥	LB10S	SMD SOPA-4	1	
2	C1	陶瓷电容	400V/1.0nF	SMD 1206	1	
3	C2		N.A.	SMD 0805	1	
4	C3		50V/10.0uF	SMD 1206	1	
5	C4		50V/1.0nF	SMD 0805	1	
6	CY1	Y安规电容	400V/470pF	DIP 脚距 10.0mm	1	
7	EC1	电解电容	400V/10uF	Ф 8*12	1	
8	EC2		400V/10uF	Ф 8*12	1	
9	EC3		6.3V/680uF	Ф 6.3*9	1	固态电容 Low ESR
10	EC4		6.3V/680uF	Ф 6.3*9	1	固态电容 Low ESR
11	D1	二极管	A7	SMD SOD-123FL	1	
12	D4		F1M	SMD SOD-123FL	1	
13	D3		15A/50V	SMD TO277	3	
14	L1	电感	1.0mH	DIP 6*8 本 电感		
15	L2		3.3uH	SMD 0803	Q ₁	
16	F1	保险丝	T2.0A/250V	DIP 海距 15.0mm	1	
17	R1	电阻	5.1ΚΩ	0805	1	
18	R2		150 Ω	SMID 060	1	
19	R3		240K Ω	SMD 1266	1	
20	R4		10 Ω	SMD 0805	1	
21	R5		33K	MD 0805	1	1%
22	R6		May a series	SMD 0805	1	1%
23	R7		100 K Ω	SMD 0805	1	1%
24	R8		2.2 Ω	SMD 1206	1	1%
25	R9		242	SMD 1206	1	1%
26	R10	_*	(10)	SMD 0805	1	
27	R11	^	1 .7K Ω	SMD 0805	1	
28	T1	变压器	EE13 加厚	立式 5+5	1	
29	U1	IC	PN8370	SMD SOP-7	1	

Chipown

6. 变压器规格

6.1 电路图

Chipown

6.3 绕线结构

Winding	Margin	Pin	Wire&Wire	Turns	Tape	Tube	Winding
No.	Tape		Copper		Layer		Tape
组别	挡墙	脚位	线径&股数	圏数	胶带层数	套管	绕线方式
N1	N. A.	8~10	2UEW0. 2*1	96	2	Add	密绕
N2	N. A.	1~	2UEW0. 2*2	15	2	Add	密绕
N3	N. A.	A∼B	TEX-E0. 45*2	5	2	Add	密绕
N4	N. A.	4~1	2UEW0. 2*2	15	3	Add	密绕

备注:

- 1) 剪掉:Pin2, 3, 5, 6, 7, 9;
- 2) 初级绕组进出线不能交叉;
- 3) 调整电感量时,一定要磨磁芯中柱,不能垫气隙;

6.4 电气特性

Test Item 测试项目	Test Logation	Test Condition 测试条件	Test Spec. 测试规格
Primary Inductance 电感(uH)	8 ∼10	10KHz, 1V	2. OmH
Leakage Inductance 漏感(uH)	8~10	10KHz, 1V 次级全部短路	<100uH
	PRI~CORE	AC/1.5KV,1min	<3mA
HI-POT Test 耐压测试	PRI~SEC	AC/3.75KV,1min	<3mA
	SEC~CORE	AC/3.75KV,1min	<3mA

Chipown

7. 电源输入输出特性和工作波形

测试条件: Vin=90~265Vac;

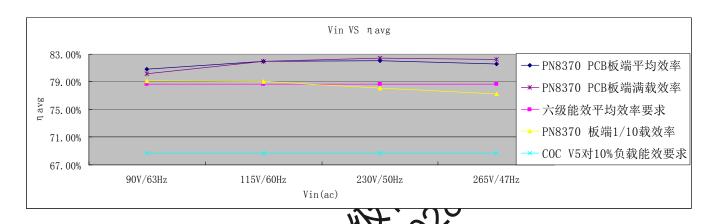
测试结果:输出线端平均效率大于78.70%(六级能效);

备注: a、热机半小时后测试;

b、由于系统板 PSR, 故变压器的耦合或漏感差异太大, 会对输出略有影响;

c、由于系统为 PSR,由于肖特基发热后正向压降降低,故热机后会有 Vo 略微上升的现象;

Vin Load			PCB 板端				
V 111	Loau		Vo(V)	Pin (W)	Po(W)	η	
	No_load	0.000	5. 095	26. 2m			
	1/10 Load	0. 200	4. 926	1. 244	0.985	79. 18%	
	1/4 Load	0.500	4. 986	3. 072	2. 493	81.16%	
85V/63Hz	2/4 Load	1.000	5.064	6. 257	5. 064	80.93%	
	3/4 Load	1.500	5. 184	9. 615	7. 7 .	80.88%	
	4/4 Load	2.000	5. 146	12. 631	CO 92	80. 21%	
	ηavg			1XX	70	80.80%	
	No_load	0.000	5. 098	26. 1m)`		
	1/10 Load	0.200	5. 007	ル 1.26 フレ	1.001	79.04%	
	1/4 Load	0.500	5.015	3,000	2.507	81.88%	
115V/60Hz	2/4 Load	1.000	N N N N N N N N N N N N N N N N N N N	• 6. 201	5. 080	81.92%	
	3/4 Load	1.500	\ 5\178 \	9. 481	7. 767	81.92%	
	4/4 Load	2.000	75.18V	12. 660	10.379	81.98%	
	ηavg	10	1/4/			81. 93%	
	No_load	0.000	5. 064	26.6m			
	1/10 Load	0. 200	5. 023	1. 286	1.005	78. 15%	
	1/4 Load	250	4. 997	3. 086	2.498	80.96%	
230V/50Hz	2/4 Load	2000	5. 078	6. 180	5.078	82. 16%	
	3/4 Load	1.500	5. 182	9. 407	7. 773	82.63%	
	4/4 Load	2.000	5. 180	12. 569	10. 361	82. 43%	
	ηavg					82.04%	
	No_load	0.000	5. 053	32. 2m			
	1/10 Load	0.200	5. 031	1. 302	1.006	77. 29%	
	1/4 Load	0.500	4. 945	3. 098	2. 473	79.82%	
265V/47Hz	2/4 Load	1.000	5. 065	6. 194	5. 065	81.77%	
	3/4 Load	1.500	5. 182	9. 437	7. 773	82. 37%	
	4/4 Load	2.000	5. 180	12. 602	10.360	82. 21%	
	ηavg					81.54%	

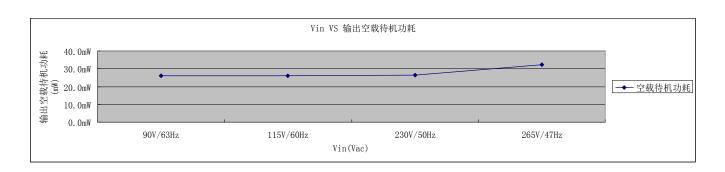

Chipown

7.1 效率

测试条件: Vin=90~265Vac;

测试结果:输出 PCB 板端平均效率大于六级能效要求的 78.70%, 10%负载远效率大于 68.7%;

Vin	10%load	25%load	50%load	75%load	100%load	ηavg
90V/63Hz	79. 18%	81. 16%	80. 93%	80. 88%	80. 21%	80.80%
115V/60Hz	79.04%	81.88%	81. 92%	81. 92%	81. 98%	81. 93%
230V/50Hz	78. 15%	80. 96%	82. 16%	82. 63%	82. 43%	82.04%
265V/47Hz	77. 29%	79.82%	81.77%	82. 37%	82. 21%	81. 54%



7.2 输出开路待机输入功耗

测试条件: Vin=90~265Vac;

测试结果: 待机功耗小于 50mW

Vin	空载待机功耗	
90V/63Hz	26. 2mW	
115V/60 Hz	26. 1mW	
230У/50Их	26.6mW	
265 XXX IIz	32.2mW	

Chipown

7.3 输出端路时输入功耗 测试条件: Vin=90~265Vac;

测试结果: **待机功耗小于 1.0W**;

Vin	输出短路功耗
90V/63Hz	88mW
115V/60Hz	90mW
230V/50Hz	100.mW
265V/47Hz	150.0mW

7.4 输出线端电压调整率

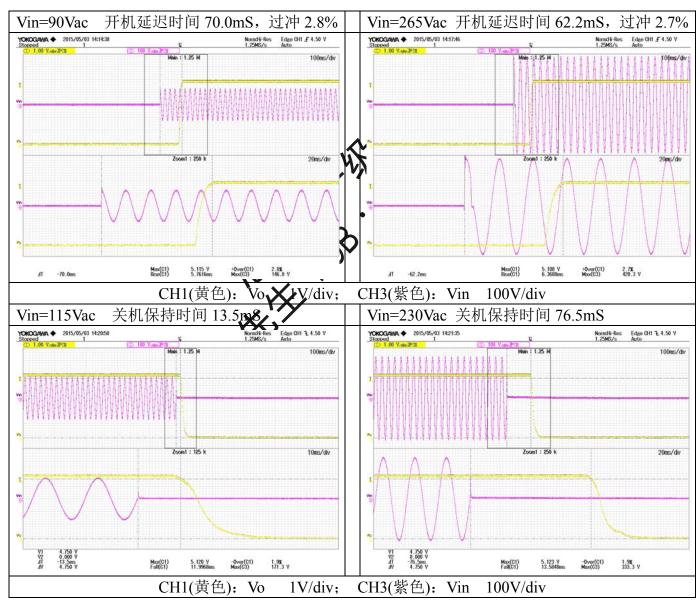
测试条件: Vin=90~265Vac; 测试结果: **线性调整率小于±1%;** 负载调整率小于±**5%**;

测试结果如下:输出线端为以线损模拟算出(1.5M 20AGW 损耗约 0.104m Ω)

						<u> </u>			
	PCB 板端测试数据 COV								
Vin	空载	1/10 载	1/4 载	2/4	3/4	4/4 载	负载调整率		
90V/63Hz	5.095V	4.926V	4.986V	5,26437	3 184V	5.146V	±2.55%		
115V/60Hz	5.098V	5.007V	5.015V	W.080V	3 .178V	5.190V	±1.78%		
230V/50Hz	5.064V	5.023V	4.997V	3.078	5.182V	5.180V	±1.82%		
265V/47Hz	5.053V	5.031V	4.945V	51065V	5.182V	5.180V	±2.33%		
线性调整率	±0.45%	±1.04%	₩ 67%	•±0.16%	±0.06%	±0.43%			
\$\frac{1}{2}\tau_{1}\tau_{1}\tau_{2}\tau_{1}\tau_{1}\tau_{2}\tau_{1}\tau_{1}\tau_{2}\tau_{1}\tau_{2}\tau_{1}\tau_{2}\tau_{1}\tau_{2}\tau_{2}\tau_{1}\tau_{2}\t									

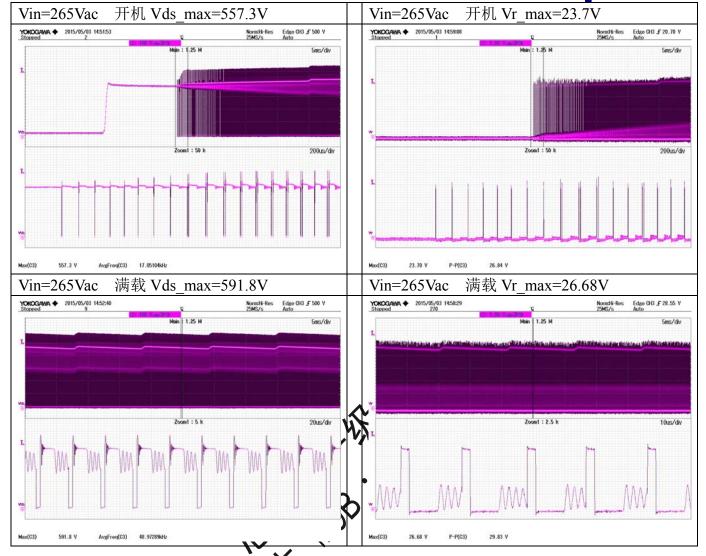
模拟 1.3m 20 W 输出线端测试数据								
Vin	空载	1/10	1/4 载	2/4 载	3/4 载	4/4 载	负载调整率	
90V/63Hz	5.095V	4.905V	4 934V	4.960V	5.028V	4.938V	±1.91%	
115V/60Hz	5.098V	4.987	4.963V	4.976V	5.022V	4.982V	±1.35%	
230V/50Hz	5.064V	5.008V	4.945V	4.974V	5.026V	4.972V	±1.19%	
265V/47Hz	5.053V	5.00 DV	4.893V	4.961V	5.026V	4.972V	±1.59%	
线性调整率	±0.45%	±1.04%	±0.69%	±0.16%	±0.06%	±0.43%		

Chipown


7.5 开机延迟时间,关机保持时间和 Vds&Vr,开机交流浪涌电流,输出过冲以及输出上升时间

测试条件: Vin=90~265Vac;

测试结果:全电压下开机延迟时间小于 0.2S:

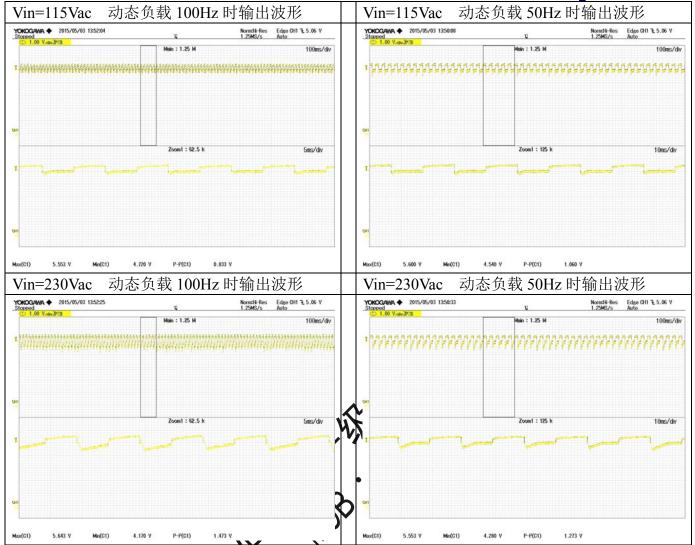

230Vac 时关机保持时间大于 10mS; Vds 最大 591.8V, Vr 最大 26.68V

Vin	开机延迟时间	关机保持时间	开机过冲	开机欠冲	Vo 上升时间	Vo下降时间
90V/63Hz	70.0 mS	4.3 mS	2.8%	1.8%	5.76 mS	11.76 mS
115V/60Hz	67.4 mS	13.5 mS	2.8%	1.9%	5.85 mS	11.99 mS
230V/50Hz	63.6 mS	76.5 mS	2.7%	1.9%	6.33 mS	13.58 mS
265V/47Hz	62.2 mS	105.0 mS	2.7%	1.9%	6.36 mS	13.03 mS

Chipown

7.6 动态负载测试

测试条件: Vin=90~265Va


输出负载电流上升 降斜率为 0.1A/uS, D=50%;

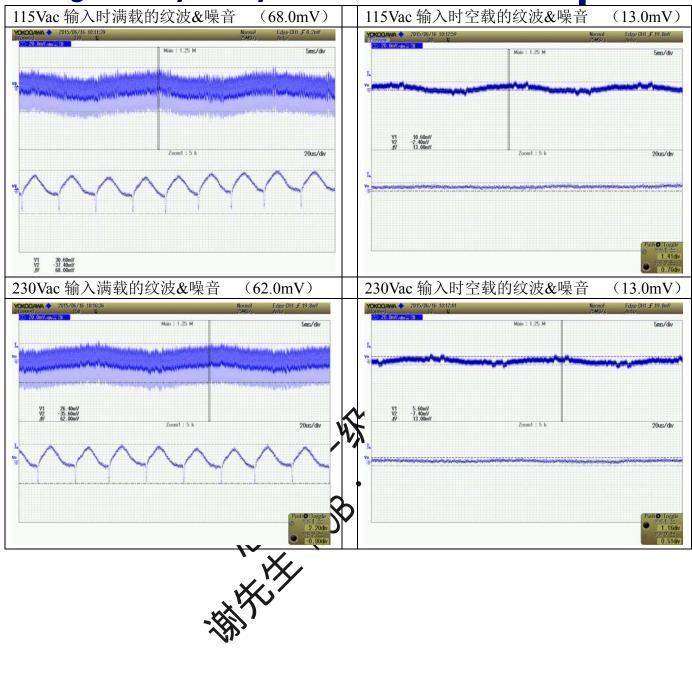
测试结果: 负载从空载到满载输出最低电压大于 4V;

	负载变	化频率	负载变化频率			
Vin	100)Hz	$50 \mathrm{Hz}$			
	Vo_min	Vo_min Vo_max		Vo_max		
90V/63Hz	4.62V	5. 53V	4.46V	5. 58V		
115V/60Hz	4.72V	5.55V	4.54V	5.55V		
230V/50Hz	4. 17V	5.64V	4. 28V	5. 55V		
265V/47Hz	4. 13V	5.61V	4. 20V	5. 59V		

Chipown

7.7

输出线端满载纹波&噪音 测试条件: Vin=90~265Vac; 输出为满载 lo=2.0A;


纹波测试时输出增加 50V/10uF 和 0.1uF 的电容,并且测试于输出线端(1.0M 20AWG);

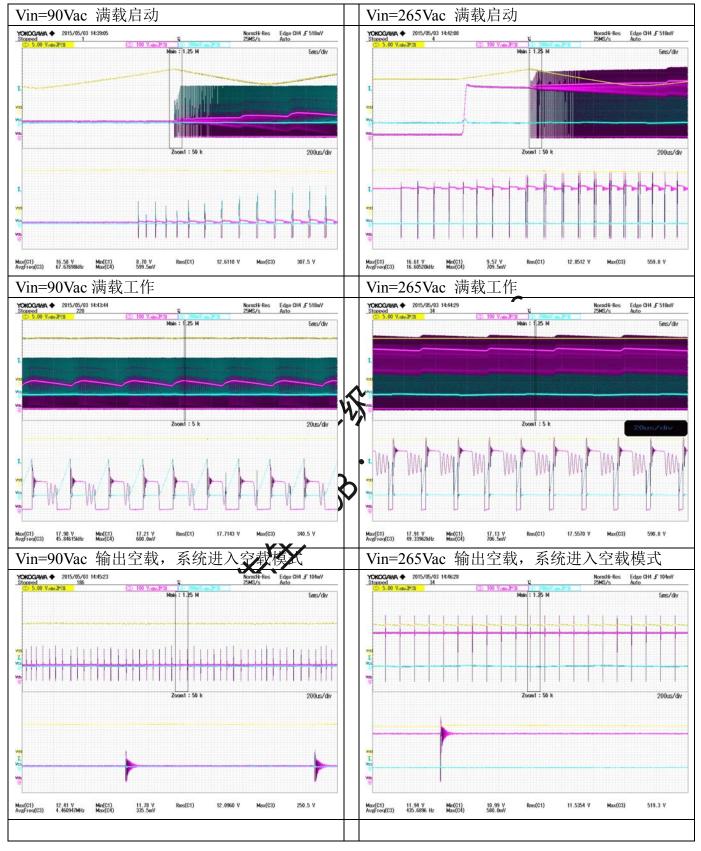
测试结果: 纹波小于 80mV(额定输入电压);

Vin	纹波					
Vin	满载	半载	空载			
90V/63Hz	75.0 mV	58.0 mV	13.0 mV			
115V/60Hz	68.0 mV	55.0 mV	13.0 mV			
230V/50Hz	62.0 mV	56.0 mV	13.0 mV			
265V/47Hz	61.0 mV	55.0 mV	13.0 mV			

Chipown

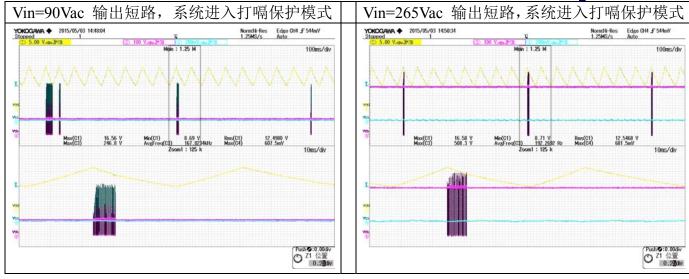
7.8 各个工作状态波形

测试条件: Vin=90~265Vac:


CH1 (黄色): Vdd (5V/div);

CH3 (紫色): Vds (100V/div); CH4 (蓝色): Vcs (200mV/div);

波形如下所示:



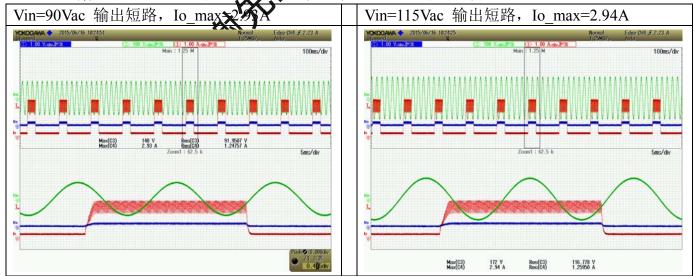
Chipown

Chipown

7.9 输出短路时的最大 lo

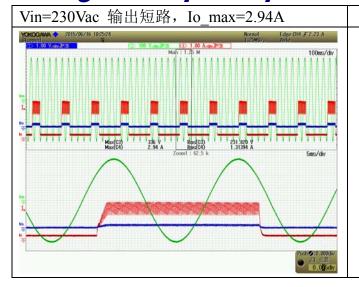
测试条件: Vin=90~265Vac & 输出短路;

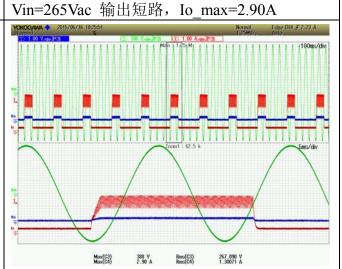
短路于输出线端(1.0M 20AWG);


测试结果如下:

	1	X	•		1
Vin	M	i d <u>m</u> a	ax	9	,`
90V/63Hz	公	2. 93	A		
115V/60Wz		2,94)		
230 0050 Hz	•	2.94	A		
RWN17HZ	,	2. 90	A		
Bi. "U	7				

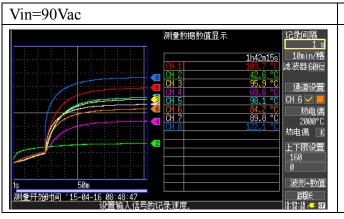
波形如下所示:

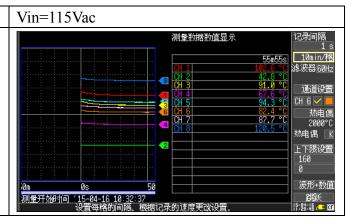

CH1 (蓝色): Vo (1V/div);


CH3 (紫色): Vin (100V/div) (蓝色): Io (1.0A/div);

Chipown

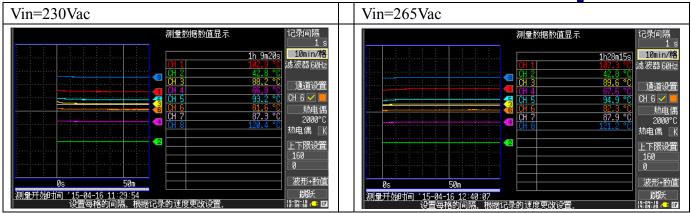
7.10 温升测试


测试条件:环境温度 40℃;


外壳密闭、无风环境测试; Vin=90~265Vac: lo=2.0A

测试结果: IC 表面温度最高 109.7℃;

WHX 20108026


Vin	CH1	CH2	СН3	ULCH5	СН6	CH7	CH8
(Vac)	IC	环境	输入电解	变压器磁性	输出电解	USB	D3
90	109.7℃	42.6℃	95.9°C) AU	84.2℃	89.8℃	122.1℃
115	102.6℃	42.8℃	91.00	2413°C	82.4℃	87.7℃	120.5℃
230	102.9℃	42.8℃	88.2℃ >	93.2℃	81.6℃	87.3℃	120.4℃
265	107.3℃	42.8℃	89.6°C	94.9℃	82.3℃	87.9℃	121.2℃

Chipown

EMC 测试 8.

8.1 群脉冲测试结果

测试条件: Vin=230Vac, 输出为满载; 输入为 2Pin 电源线;

输出采用 1.5m 的 20 AWG:

测试结果: Vo 不低于 3V, 无元器件损坏;

测试结果如下:

			X'//	$C_{\mathbf{U}}$
频率	电压		试结果	10
27.1	10/12	'(R),	70	Ň
5KHz	+2000V	Pas A	Pask	A
ЭКПХ	-2000Y	Pass A	Pass	A
100KHz	+200	Pass A	Pass	A
	2000 A	Os A	Pass	A
	M. (\mathcal{A}		

8.2 Surge 测试结果 测试条件: Vin=230Vac,输出为债载 输出采用 1.5m.的 AWG

测试结果:通过:

测试结果如下:

测试条件	电压	测试结果		
L-N	+1000V		A	
	-1000V	Pass	A	

8.3 绝缘耐压测试结果

测试条件: 交流 3.75KVac, 60S, 5.0mA;

测试结果:通过:

Chipown

8.4 传导测试结果

测试条件: Vin=230Vac, 输出为满载; 输入为 2Pin 电源线;

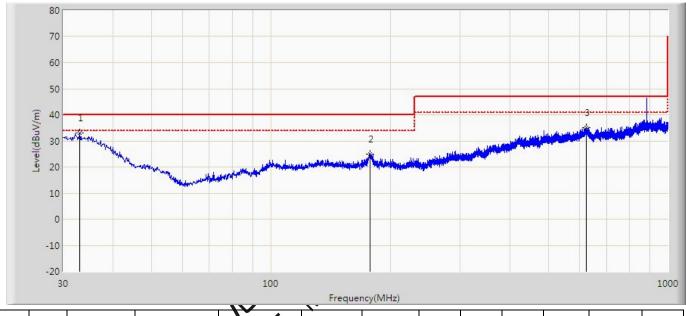
输出采用 1.5m 的 22 AWG;

测试结果: 裕量大于-6dB:

传导测试结果					
L	N				
-7. 60dB (AV)	−7. 33dB (AV)				

Chipown

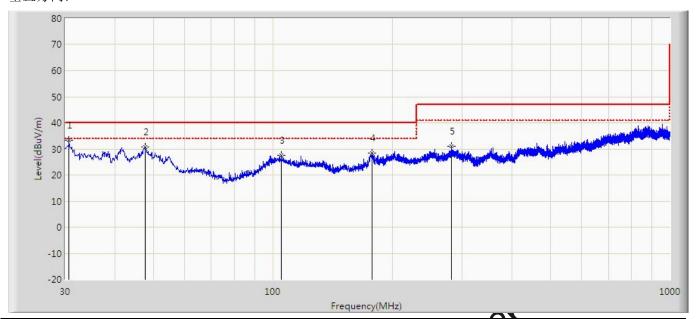
8.5辐射测试结果


测试条件: Vin=230Vac, 输出为满载; 输入为 2Pin 电源线;

输出采用 1.5m 的 20 AWG;

测试结果: 裕量大于-6dB;

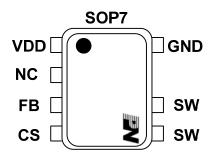
辐射测试结果				
水平	垂直			
-7.04dB(PK)	-6.76dB(PK)			


水平方向:

No	Mark	Frequency	Measure Level	Reading Level	Over	Limit	Prob	Cable	Amp	Ant	Table	Туре
		(MHz)	(dBuV/m)	(dBuV)	Limit	(dBuV/m	е	(dB)	(dB)	Pos	Pos	
				MO.	(dB))	(dB/			(cm)	(deg)	
			-,8				m)					
1	*	33.031	32.956	5.778	-7.044	40.000	20.71	6.461	0.000	0	0	PK
							7					
2		178.046	25.016	8.206	-14.984	40.000	9.623	7.186	0.000	0	0	PK
3		623.276	34.996	4.361	-12.004	47.000	22.19	8.440	0.000	0	0	PK
							5					

Chipown

垂直方向:


No	Mark	Frequency	Measure Level	Reading Level	Over	Limit	Prob	Cable	Amp	Ant	Table	Туре
		(MHz)	(dBuV/m)	(dBuV)	Limit	(dB4W0X	e	Ç ₩	(dB)	Pos	Pos	
					(dB)	KY,		0		(cm)	(deg)	
1	*	30.728	33.233	9.302	-646	40.00	17.48 4	6.448	0.000	0	0	PK
2		47.702	30.595	11.734	-9.405	40.000	12.30 6	6.572	0.000	0	0	PK
3		105.054	27.618	X 108		40.000	15.43	6.874	0.000	0	0	PK
4		177.440	28.377	X 039	-11.623	40.000	11.15	7.180	0.000	0	0	PK
5		282.200	30.938	5.857	-16.062	47.000	17.54	7.540	0.000	0	0	PK

Chipown

9. 附录

PN8370 封装和脚位配置图:

