

Single Stage Primary Side Regulation Flyback Controller with Active PFC for LED TRIAC Dimming

Features

Excellent Compatibility and Performance

- Flickerless TRIAC Dimmable
- Primary Side Regulation (PSR)
- Constant Current output (+/- 2%)
- Universal Input Voltage Range (85V 265V)

Energy Efficient

- Boundary Conduction Mode (BCM) with valley switching reduces EMI and enhances efficiency
- Power Factor Correction (PF > 0.95)
- High Efficiency (> 87%)
- Low Startup Current: 1µA
- Low Quiescent Current: 1.1mA

Advanced Protection and Safety Features

- Open LED Protection
- Short LED Protection
- Cycle by Cycle Current Limit
- VCC Over Voltage Protection (OVP)
- VCC Under Voltage Lockout (UVLO)
- Over Temperature Protection

Package

SOP-8 Package Available

Description

The offline primary side regulation LED TRIAC dimming controller, SE8320, provides accurate output current, high power factor and low total harmonic distortion. High efficiency is achieved by low operating current and valley turn-on of the primary MOSFET. Constant on-time control is utilized for a better PFC performance.

TRIAC dimming is implemented via proprietary dimming control and smoothly operated without flicker. A wide range of TRIAC and trailing edge dimmers are tested with flickerless and deep dimming range achieved.

The multiple protections of SE8320, including open LED protection, short LED protection, cycle by cycle current limit, VCC UVLO and over temperature protection, can greatly enhance the system reliability and safety. Current limit threshold is adjusted automatically in a short LED condition in order that the output current is minimized.

Applications

- Isolated LED Driver withTRIAC dimming
- LED lighting

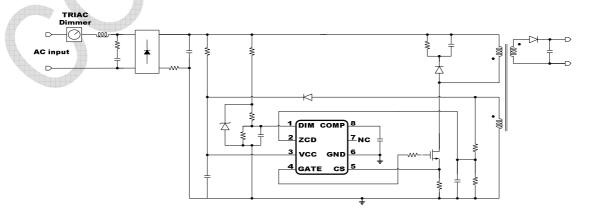


Figure 1. Typical Application

Functional Block Diagram

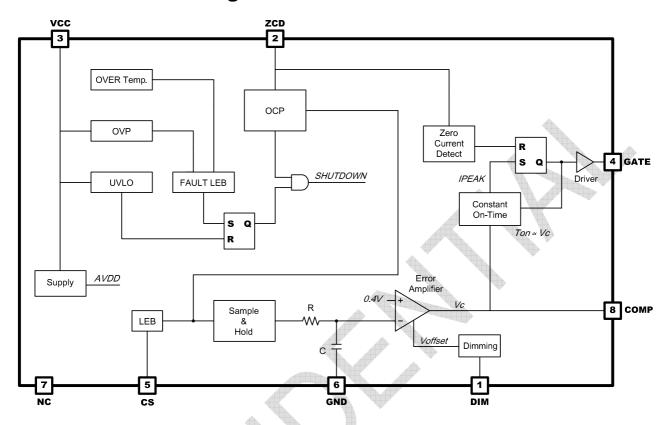
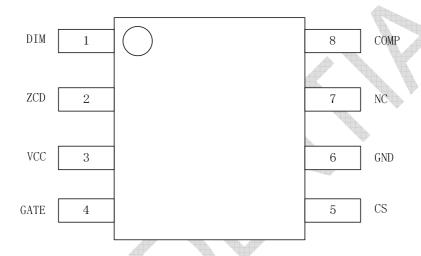


Figure 2. Functional Block Diagram

Pin Functions


Pin #	Name	Description
1	DIM	Dimming pin. This pin detects the TRIAC dimming phase to control the LED lighting. This pin can be NC if TRIAC dimming is not wanted.
2	ZCD	Zero current detection pin. Connect this pin through a resistor divider from the auxiliary winding to GND in order to detect the inductor current zero crossing point. This pin also detects the output voltage for OCP.
3	vcc	Power supply pin. This pin supply power both for IC operating current and GATE driving current.
4	GATE	Gate drive output pin. The totem pole output stage is able to drive high power MOSFET.
5	CS	Current sense pin. The MOSFET current is sensed via a resistor for constant current regulation and cycle-to-cycle current limit.
6	GND	Ground.
7	NC	Not connected.
8	COMP	Loop Compensation pin. Connect a compensation network to stabilize the loop.

Ordering Information

ORDERING NUMBER	PINS	PACKAGE
SE8320-SO-L	8	SOP-8

Package Reference

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Power Supply Voltage	V _{cc}	<30	V
ZCD Pin Input Voltage	V _{ZCD}	-0.3 to 7.0	V
CS Pin Input Voltage	V _{cs}	-0.3 to 7.0	V
DIM Pin Input Voltage	V_{DIM}	-0.3 to 7.0	V
COMP Pin Input Voltage	V_{COMP}	-0.3 to 7.0	V
GATE Pin Input Voltage	V_{GATE}	-0.3 to 30.0	V
Maximum Junction Temperature	TJ	<150	€.
Storage Temperature	T _{STG}	-55 to 150	C
Lead Temperature (Soldering, 10s)	T _{Lead}	<260	C

Electrical Characteristics

V_{CC}=20V, T_A=+27℃, unless otherwise noted.

	T _A =+27°C, unless otherwise	Condition	Min.	T.,,,,	May	Unit	
Symbol	Parameter		wiin.	Тур.	Max.	Unit	
SUPPLY SECTION $(T_A = -40^{\circ}C \text{ to } 125^{\circ}C)$							
V _{CC}	Operating Range		9		24	V	
V _{CC-ON}	Turn-On Threshold Voltage		14	16.3	18	V	
$V_{CC\text{-}OFF}$	Turn-Off Threshold Voltage		7	8.2	9	V	
$V_{\text{CC-HYS}}$	V _{CC} Hysteretic Voltage		7	8.1	9	V	
I _{CC}	Operating Current	Switch Period = 15µs	1.6	1.9	2.4	mA	
I_Q	Quiescent Current	No switch	1	1.1	1.55	mA	
I _{ST}	Startup Current	$V_{CC} = V_{CC-ON} - 0.16V$	0.5	1	1.5	μΑ	
V_{OVP}	V _{CC} Over-Voltage-Protection		24	25	25.5	V	
$V_{\text{OVP-HYS}}$	OVP Hysteresis		0.9	1	1.05	V	
CONSTA	NT ON-TIME SECTION (TA	x = -40℃ to 125℃)					
T _{ON-MIN}	Minimum On Time		0.7	1	1.5	μs	
$T_{ON\text{-}MAX}$	Maximum On Time		20	24	27	μs	
ERROR A	MPPLIFIER SECTION						
G_{M}	Transconductance			120		μA/V	
A_{EA}	Voltage Gain			9000		V/V	
V_{COMP}	COMP Voltage Range		0.9		4	V	
I _{C-SOURCE}	Max Source Current	,	35	48	65	μΑ	
I _{C-SINK}	Max Sink Current		-220	-294	-362	μA	
GATE DR	IVER SECTION (T _A = -40℃	to 125℃)					
V_{CLAMP}	Output Clamp Voltage		11	13.5	14	V	
I _{G-SOURCE}	Max Source Current		0.97	1.2	1.4	Α	
I _{G-SINK}	Max Sink Current		-1.2	-1.7	-2.1	Α	
ZERO CU	RRENT DETECTOR SECTION	ON					
V_{ZCD}	ZCD Threshold			0.4		V	
V _{ZCD_HYS}	ZCD Hysteresis			0.5		V	
T _{OFF-MIN}	Minimum Off Time			3.6		μs	
AUTO ST	ART SECTION						
T _{START}	Auto Start Time	-40℃ < T _A < 125℃	100	135	190	μs	

Continued on the following page...

Electrical Characteristics

V_{CC}=20V, T_A=+27℃, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
OVER-CURRENT PROTECTION SECTION							
V _{OCP-H}	CS High Threshold Voltage for OCP			3		V	
$V_{\text{OCP-L}}$	CS Low Threshold Voltage for OCP			1		V	
V _{HOCP-EN}	ZCD Threshold Voltage to Enable High OCP level		4	0.9		V	
V _{LOCP-EN}	ZCD Threshold Voltage to Enable Low OCP level			0.6		٧	
T_LEB	CS Sampling Leading-Edge Blanking Time			215		ns	
OVER TE	MPERATURE PROTECTION	SECTION					
T _{OTP}	Over Temperature Protection		140	150	160	C	
T _{OTP-HYS}	OTP Hysteresis		22	25	28	S	
DIMMING	SECTION						
V_{DH}	Maximum V _{DIM} at Low Dimming Angle Range			3.5		V	
V_{DL}	Maximum V _{DIM} at High Dimming Angle Range			2.5		٧	
DS _{DH}	V _{DIM} vs. V _{EA-OFFSET} Slope at High Dimming Angle Range			0.23		V/V	
DS_DL	V _{DIM} vs. V _{EA-OFFSET} Slope at Low Dimming Angle Range			0.08		V/V	

Functional Description

SE8320 is a TRIAC dimmable single stage Flyback and PFC controller for LED lighting applications. Primary side regulation is applied so that the system is simplified, and high power factor is achieved by constant on-time model. Boundary Conduction Mode (BCM) with valley switching improves efficiency **EMI** performance. The multi-protection function system stabilizes and protects external components.

Startup

The capacitor C_{ST} across V_{BUS} and GND is charged by BUS through a start up resistor R_{ST} once BUS is powered on. After V_{CC} rises up to V_{CC-ON}, the internal blocks start to work and the gate driver begins to switch. Then V_{CC} will be pulled down by internal consumption until the power supply is taken over by the auxiliary winding.

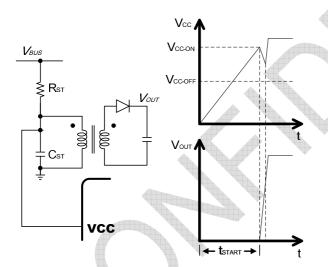
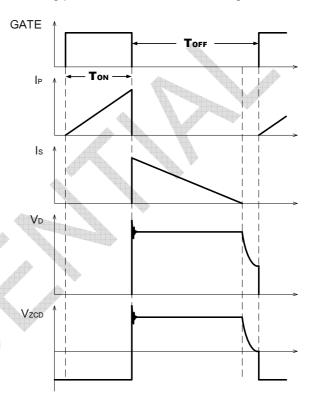


Figure 3. Startup Sequence

In order that V can rise when start up, and fall when OVP and OTP, R_{ST} should be preset following this:


$$\frac{V_{\text{BUS}}}{I_{\text{Q}}} < R_{\text{ST}} < \frac{V_{\text{BUS}}}{I_{\text{ST}}}$$

$$\begin{split} \frac{V_{BUS}}{I_Q} < & R_{ST} < \frac{V_{BUS}}{I_{ST}} \\ \text{Select C}_{ST} \text{ for an ideal t}_{ST} : \\ & t_{ST} = \frac{C_{ST}V_{BUS}}{\frac{V_{BUS}}{R_{ST}} - I_{ST}} \\ \text{For a more stable V}_{CC}, \text{ a bigger} \end{split}$$

For a more stable V_{CC} , a bigger C_{ST} is needed, and R_{ST} should be decreased in order that t_{ST} is not changed. Obviously, the low I_{ST} of SE8320 makes it easier to design R_{ST}.

Boundary Conduction Mode Operation

Boundary Conduction Mode (BCM) and valley switching provides low turn-on switching losses.

Figure 4. Boundary Conduction Mode

The voltage across drain and source of the external MOSFET is detected by the ZCD pin. The current of the inductor begins to decrease linearly as soon as the external MOSFET is turned off. When the current falls to zero, the MOSFET Drain-Source Voltage decreases, which is also detected by the ZCD pin through a resistor divider. The external MOSFET would be turned on by a turn on signal sent by the Zero Current Detector once the ZCD voltage is lower than 0.4V.

Primary Side Constant Current Control

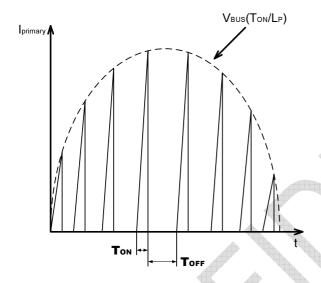
The output mean current can be represented as

$$I_{OUT} = \frac{N \times 0.4V}{2R_{CS}}$$

N-The winding turns ratio of primary side to secondary side of the transformer.

R_{CS}—The current sense resistor connected between the CS pin and GND.

Functional Description


Power Factor Correction

Internal Constant On-Time Block affords a constant gate on-time T_{ON} , which is in proportion to COMP potential. The peak current of the primary side winding is

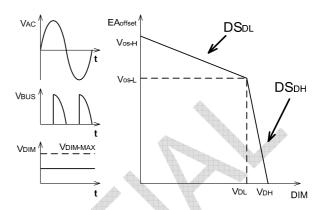
$$I_{P} = \frac{T_{ON}V_{BUS}}{L_{P}}$$

L_P—The primary inductance.

As L_P and T_{ON} is constant, I_P is accordingly in proportion to V_{BUS} (as shown in Figure 5).

Figure 5. Power Factor Correction

As a result, the input current I_{IN} of the system follows the input voltage V_{IN} , and the Power Factor is improved.


TRIAC Dimming Control

SE8320 can implement TRIAC dimming function by internal dimming block and external passive components. The Zener diode clamp voltage is divided by two resistors, as shown in Figure 1, to obtain $V_{\text{DIM-MAX}}$ in Figure 6. Dimming angle θ_{DIM} is sensed by the Zener diode and consequently changes V_{DIM} .

$$V_{DIM} = \frac{\theta_{DIM}}{180^{\circ}} V_{DIM-MAX}$$

When V_{DIM} is lower than V_{DH} , EA_{offset} increases as V_{DIM} decreases. This offset voltage eventually reduces the LED brightness.

The external dimming components can be replaced by a 1nF capacitor to GND to disable the dimming function. An internal current source would charge this capacitor to over $V_{\rm DH}$.

Figure 6. Dimming Function

VCC Under Voltage Lockout (UVLO)

When the $V_{\rm CC}$ voltage drops below $V_{\rm CC-OFF}$ (typically 8V), the whole chip shuts down, and GATE switching stops. The system would not work again until VCC capacitor is charged to $V_{\rm CC-ON}$ through the external startup resistor.

Auto Start

A auto start block is integrated in SE8320 to avoid unnecessary shut down. The auto start block starts timing as soon as the external MOSFET turns on in every period. If the ZCD pin fails to send a turn on signal after T_{START} (typically 140 μ s), the auto start block would turn on GATE automatically.

When the GATE is turned on, auto start timing stops.

Minimum Off Time

To limit the maximum switching frequency and to obtain a better EMI performance, a internal block is integrated to limit the minimum GATE off time. The external MOSFET cannot turn on again in less than 3.6µs after its latest turning off.

Leading Edge Blanking (LEB)

An internal leading edge blanking (LEB) block is employed in order to avoid the premature termination of the GATE switching pulse due to the peak voltage of the CS pin caused by the parasitic capacitor discharging when the external MOSFET turns on. $V_{\rm CS}$ sampling is disabled during the LEB time.

Functional Description

Open LED Protection

When the load of the system is open, the output capacitor is charged up rapidly. Consequently, V_{CC} rises up quickly since the VCC capacitor is charged by the auxiliary winding and its voltage reflects the output voltage.

The whole chip enters fault state, in which GATE will never be turned on, as soon as the voltage of the VCC pin rises up to V_{OVP} (typically 25V). As the external MOSFET is always off in the fault state, the auxiliary winding cannot support the V_{CC} consumption, and V_{CC} will drop. This fault state will last until UVLO.

Short LED Protection

The voltage of the ZCD pin reflects the output voltage when the switch is on. The short-LED situation can be detected through the ZCD pin and the OCP threshold would be changed in that case

If the ZCD voltage in GATE on period is lower than 0.6V, the cycle-by-cycle current limit would be 1V. The current limit threshold voltage becomes up to 3V when the ZCD voltage in GATE on period is higher than 0.9V. Figure 7 shows this function.

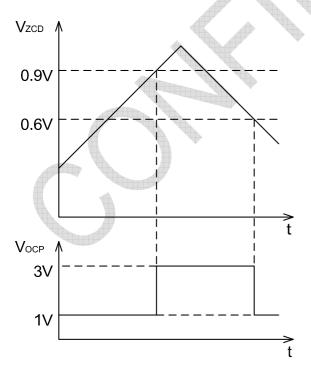
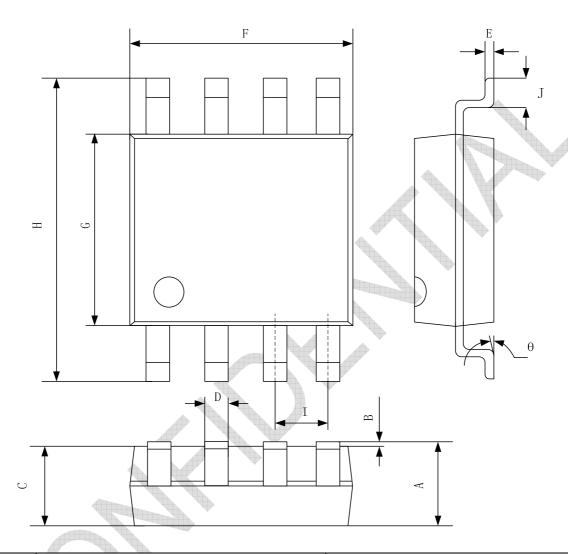


Figure 6. OCP Function


A lower OCP voltage can protect the external MOSFET as well as reduce power dissipation. As output voltage is low in the short-LED condition, the auxiliary winding cannot charge the VCC capacitor, and V_{CC} will consequently drop until UVLO.

Over Temperature Protection (OTP)

When the junction temperature is above 150°C, the chip enters fault state, and GATE driver is shut down. The UVLO signal can relive the system of fault state if the junction temperature drops below 125°C.

Package Information

Symbol	Dimensions in Millimeters		Dimensions in Inches		
	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
В	0.100	0.250	0.004	0.010	
C	1.350	1.550	0.053	0.061	
D	0.330	0.510	0.013	0.020	
E	0.170	0.250	0.006	0.010	
F	4.700	5.100	0.185	0.200	
G	3.800	4.000	0.150	0.157	
Н	5.800	6.200	0.228	0.244	
I	1.270(BSC)		0.050(BSC)		
J	0.400	1.270	0.400	1.270	
θ	0°	8°	0°	8°	

Soldering Indication

This section gives a very brief insight to a complex technology. There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow Soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stenciling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250℃. The top-surface temperature of the packages should preferable be kept below 220℃ for thick/lar ge packages, and below 235℃ for small/thin packages.

Wave Soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used, the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch:
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250℃.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual Soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300°C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320℃.

Suitability of Surface Mount IC Packages for Wave and Reflow Soldering Methods

Pookogo	Soldering Method		
Package	Wave	Reflow (1)	
BGA, HBGA, LFBGA, SQFP, TFBGA	Not suitable (2)	Suitable	
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	Not suitable	Suitable	
PLCC (3), SO, SOJ	Suitable	Suitable	
LQFP, QFP, TQFP	Not recommended (3)(4)	Suitable	
SSOP, TSSOP, VSO	Not recommended (5)	Suitable	

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect).
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch equal to or smaller than 0.5 mm.

SE8320 Rev 1.3 www.star-micro.com 11 / 12

Star Micro Electronic Technology Co.Ltd Room 602 UESTC Industrial Building NO.159, 1st Ring Rd, Chengdu, China

Tel: (86) 28 8113 1361 Fax: (86) 28 8113 1841 Email: sales@star-micro.com

Website: www.star-micro.com

IMPORTANT NOTICE

IMPORIANT NOTICE
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. SMET Ltd. believes that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by SMET for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of SMET and by furnishing this information, SMET grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. SMET owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to SMET integrated circuits or other products of SMET. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export license and /or quota needs to be obtained from the competent authorities of the Chinese Government if any of the Trade Law" is to be exported or taken out of Japan. An export license and /or quota needs to be obtained from the competent authorities of the Chinese Government if any of the products or technologies described in this material is subject to the PRC Foreign Trade Law and is to be exported or taken out of the PRC. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). SMET PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION OF SMET PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND SMET DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY SMET PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF SMET PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY SMET, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.