非隔离降压型有源 PFC LED 驱动芯片

概述

BP2338 是一款带有源功率因数校正的高精度降压型 LED 恒流控制器,适用于 85Vac-265Vac 全范围输入电压的非隔离降压式 LED 恒流电源。BP2338 集成有源功率因数校正电路,可以实现很高的功率因数和很低的总谐波失真。由于工作在电感电流临界连续模式,功率 MOS 管处于零电流开通状态,开关损耗得以减小,同时电感的利用率也较高。

BP2338 内部集成 600V 功率 MOSFET, 只需要很少的 外围器件,即可实现优异的恒流特性.

BP2338 采用专利的浮地构架,对电感电流进行全周期采样,可实现高精度输出恒流控制,并达到优异的线电压调整率和负载调整率。

BP2338 采用专利的高压 JFET 启动和供电电路,使得系统能快速启动,并且减少了外部供电元器件,实现更小的体积。

BP2338 具有多重保护功能以加强系统可靠性,包括 LED 开路保护、LED 短路保护、芯片供电欠压保护、 电流采样电阻开路保护和逐周期限流等。另外, BP2338 具有过热调节功能,在驱动电源过热时减小 输出电流,以提高系统的可靠性。

特点

- 高压 IFET 快速启动与供电
- 超快 LED 启动时间(<100mS @85Vac)
- 内置 600V 功率 MOSFET
- 有源功率因数校正,高 PF 值,低 THD
- 高达 95%的系统效率
- ±3% LED 输出电流精度
- 优异的线电压调整率和负载调整率
- 电感电流临界连续模式
- 超低 (300uA) 工作电流
- LED 短路/开路保护
- 电流采样电阻开路保护
- 逐周期电流限流
- 芯片供电欠压保护
- 自动重启功能
- 过热调节功能

应用

- GU10/E27 LED 球泡灯、射灯
- LED PAR30、PAR38灯
- LED 日光灯
- 其它 LED 照明

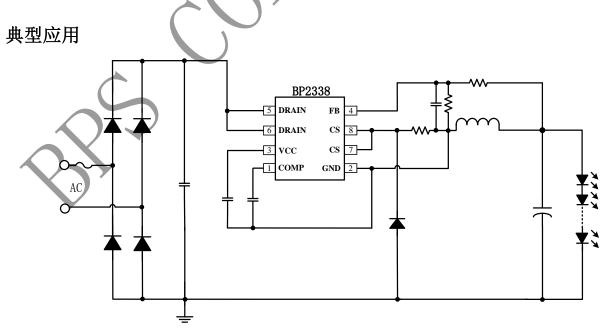
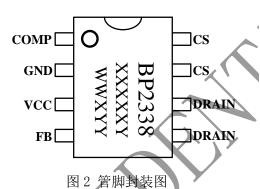


图 1 BP2338 典型应用图



非隔离降压型有源 PFC LED 驱动芯片

定购信息

定购型号	封装	温度范围	包装形式	打印	
BP2338	S0P-8	-40 ℃ 到105 ℃	编带 2,500 颗/盘	BP2338 XXXXXY WWXYY	

管脚封装

XXXXXY: lot code

WW: 标示 X: 年号 YY: 周号

管脚描述

管脚号	管脚名称	描述
1	COMP	环路补偿点
2	GND	芯片信号和功率地
3	VCC	芯片电源
4	FB	反馈信号采样端
5, 6	DRAIN	内部高压 MOSFET 的漏极
7, 8	CS	电流采样端,接采样电阻到地

非隔离降压型有源 PFC LED 驱动芯片

极限参数(注1)

符号	参数	参数范围	单位
I _{CC_MAX}	VCC引脚最大钳位电流	20	mA
COMP	环路补偿点	-0.3~6	V
FB	辅助绕组的反馈端	-0.3~6	V
CS	电流采样端	-0.3~6	v
$V_{ m DS}$	内部高压 MOSFET 漏极到源极的峰值电压	-0.3~600	V
P _{DMAX}	功耗(注 2)	0.45	W
Ө _{ЈА}	PN 结到环境的热阻	145	°C/W
$T_{ m J}$	工作结温范围	-40 to 150	$^{\circ}$
$T_{ ext{STG}}$	储存温度范围	55 to 150	$^{\circ}$
	ESD (注 3)	2	KV

注 1: 最大极限值是指超出该工作范围,芯片有可能损坏。推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

注 2: 温度升高最大功耗一定会减小,这也是由 T_{JMAX} θ J_A 和环境温度 T_A 所决定的。最大允许功耗为 $P_{JMAX} = (T_{JMAX} - T_A) / \theta$ J_A 或是极限范围给出的数字中比较低的那个值。

注 3: 人体模型, 100pF 电容通过 1.5KΩ 电阻放电。

推荐工作范围

符号	参数	参数范围	单位
I _{LED} 1	输出 LED 电流@ Vout=72V (输入电压 176V~265V)	< 300	mA
I _{LED} 2	输出 LED 电流@ Vout=36V (输入电压 176V~265V)	< 420	mA

非隔离降压型有源 PFC LED 驱动芯片

电气参数(注 4, 5) (无特别说明情况下, V_∞ =9 V, T_A =25 ℃)

符号	参数描述	条件	最小值	典型值	最大值	单位
电源电压						
$V_{\text{CC_ON}}$	Vcc 启动电压	Vcc 上升		8. 9		V
V _{CC_UVLO}	Vcc欠压保护阈值	Vcc 下降		7. 4	4	V
V _{CC_HIGH}	V _{cc} 充电结束阈值	Vcc 上升		10		V
V _{CC_HIGH_HYS}	V _∞ 充放电窗口	V _{cc} 下降		1		V
V _{CC_CLAMP}	Vcc 钳位电压			12	Y	V
$I_{ ext{CC_UVLO}}$	Vcc 关断电流	V _{cc} 上升, V _{cc} = V _{cc_on} - 1V		33	50	uA
${ m I}_{ m cc}$	V∝工作电流	F _{OP} =7kHz		250	500	uA
FB 反馈						
$V_{\text{FB_FALL}}$	FB 下降阈值电压	FB 下降		0.2		V
$V_{\text{FB_HYS}}$	FB 迟滞电压	FB上升		0. 15		V
$V_{\mathrm{FB_OVP}}$	FB 过压保护阈值			1.6		V
Ton_max	最大导通时间			20		us
$T_{\rm OFF_MIN}$	最小关断时间			2. 5		us
$T_{\text{OFF_MAX}}$	最大关断时间			150		us
电流采样						
V _{CS_LMIT}	CS 峰值电压限制			1.5		V
T _{LEB_CS}	电流采样前沿消隐时间			300		ns
T _{DELAY}	芯片关断延迟			200		ns
环路补偿						
$ m V_{REF}$	内部基准电压		0. 194	0.2	0. 206	V
$V_{\text{COMP_LO}}$	COMP 下钳位电压			1.5		V
V_{COMP}	COMP 线性工作范围		1. 5		4	V

BP2338

明源半导体

非隔离降压型有源 PFC LED 驱动芯片

符号	参数描述	条件	最小值	典型值	最大值	单位
$V_{\text{COMP_HI}}$	COMP 上钳位电压			4.0		V
功率 MOSFET						
R _{DS_ON}	功率 MOSFET 导通电阻	$V_{GS}=10V/I_{DS}=0.5A$		1.8		Ω
BV _{DSS}	功率 MOSFET 击穿电压	V_{GS} =0V/ I_{DS} =250uA	600		4	V
${ m I}_{ m DSS}$	功率 MOSFET 漏电流	$V_{GS} = 0V/V_{DS} = 600V$			1	uA
高压 JFET 部分						*
${f I}_{ ext{JFET}}$	JFET 电流	JFET 漏端对芯片 地电压 20V		10	>	mA
BV _{DSS}	JFET 耐压		600		·	V
${ m I}_{ m DSS}$	JFET 关断漏端电流			45		uA
过热调节部分						
$T_{ m REG}$	过热调节温度		7	140		$^{\circ}\!$

注 4: 典型参数值为 25℃ 下测得的参数标准。

注 5: 规格书的最小、最大规范范围由测试保证 典型值由设计、测试或统计分析保证。

内部结构框图

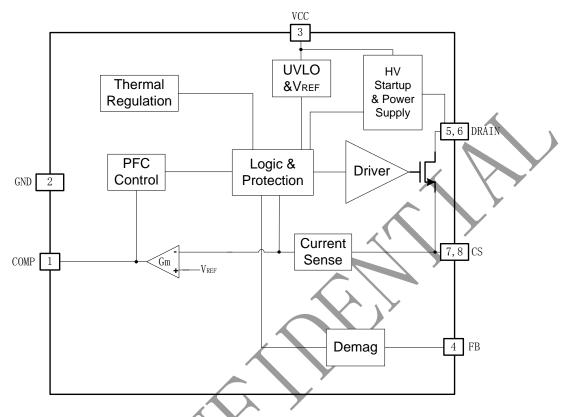


图 3 BP2338 内部框图

应用信息

BP2338 是一款内部集成 600V 功率 MOSPET 的有源 功率因数校正 LED 恒流控制芯片,用于非隔离降 压型电路,系统工作在电感电流临界连续模式,可以实现很高的功率因数、很低的总谐波失真和高效率。

1 启动

在系统上电后,母线电压通过内部高压启动和供电电路给 V_{cc} 引脚的电容充电,当 V_{cc} 电压上升到启动阈值电压后,芯片内部控制电路开始工作,COMP电压被快速上拉到 $1.5V_{cc}$ 然后 BP2338 开始输出脉冲信号,系统刚开始工作在7kHz 开关频率,COMP电压从1.5V 开始逐渐上升,电感峰值电流随之上升,从而实现输出 LED 电流的软启动,有效防止输出电流过冲。

当 V_{CC} 电压高于 V_{CC_HIGH} 时,关断 JFET,停止充电; 当 V_{CC} 电压低于 V_{CC} 0x 时,打开 JFET,恢复充电。

2 恒流控制,输出电流设置

BP2338 采用专利的浮地构架,对电感电流进行全周期采样,工作于电感电流临界连续模式,可以实现高精度输出恒流控制。

LED 输出电流计算方法:

$$I_{OUT} \approx \frac{V_{\text{REF}}}{Rcs}$$

其中,

V_{REF}是内部基准电压 Rcs 是电流采样电阻的值

3 反馈网络

BP2338 通过 FB 来检测输出电流过零的状态, FB

非隔离降压型有源 PFC LED 驱动芯片

的下降阈值电压设置在 0. 2V,迟滞电压为 0. 15V。 FB 引脚也可以用来探测输出过压保护(0VP),阈 值为 1. 6V。FB 的上下分压电阻比例可以设置为:

$$\frac{R_{FBL}}{R_{FBL} + R_{FBH}} = \frac{1.6V}{V_{OVP}}$$

其中,

R_{FBL}是反馈网络的下分压电阻 R_{FBH}是反馈网络的上分压电阻 V_{ovr}是输出电压过压保护设定点 推荐 FB 下分压电阻设置在 5.1KΩ 或更小的值。 为了加强 FB 节点抗噪声能力,可以在 FB 下分压 电阻上并联一个约 100pF 左右的电容。

4 过温调节功能

BP2338 具有过热调节功能,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定过热调节温度点为 140℃。

5 保护功能

BP2338 内置多重保护功能,保证了系统可靠性

当 LED 开路时,输出电压逐渐上升,FB 引脚可以 在功率管关断时检测到输出电压。当FB 升高到 OVP 保护阈值时,会触发保护逻辑并停止开关工作。

系统进入保护状态后,内部高压电路停止对 V_{cc} 充电, V_{cc} 电, V_{cc} 电, V_{cc} 电压开始下降,当 V_{cc} 到达欠压保护阈值时,系统将重启。同时系统不断的检测系统状态,如果故障解除,系统会重新开始正常工作。

当 LED 短路时,系统工作在 7kHz 低频,以减小短路功耗。

当变压器饱和时,CS 峰值电压将会比较高。当 CS 电压上升到内部限制值(1.5V)时,该开关周期马上停止。此逐周期限流功能可以保护功率 MOS 管、功率电感和输出续流二极管。

6 PCB 设计

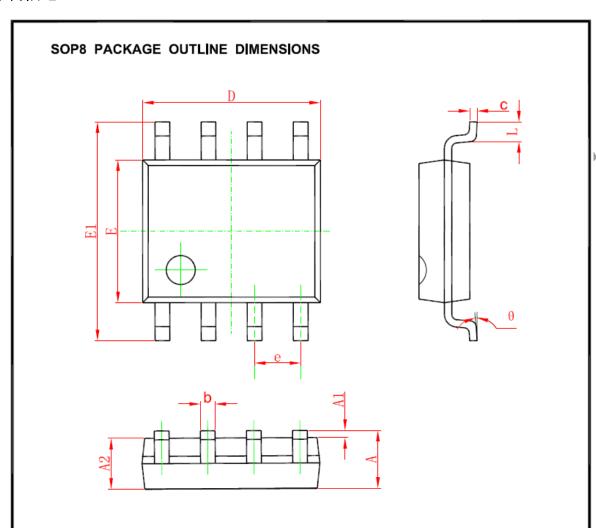
在设计 BP2338 PCB 板时,需要注意以下事项:

旁路电容

Vcc的旁路电容需要紧靠芯片 Vcc和 GND 引脚。

地线

电流采样电阻的功率地线尽可能粗,且要离芯片的地(Pin2)尽量近,以保证电流采样的准确性,否则可能会影响输出电流的调整率。另外,信号地需要单独连接到芯片的地引脚。


功率环路的面积

减小大电流环路的面积,如功率电感、功率管、 母线电容的环路面积,以及功率电感、续流二极 管、输出电容的环路面积,以减小 EMI 辐射。

FB 引脚

接到FB的分压电阻必须靠近FB 引脚,且节点要远离功率电感的动点,否则系统噪声容易误触发FB OVP保护功能。

封装信息

Symbol	Dimensions Ir	n Millimeters	Dimensions	In Inches	
	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0.053	0.061	
b	0. 330	0. 510	0.013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	