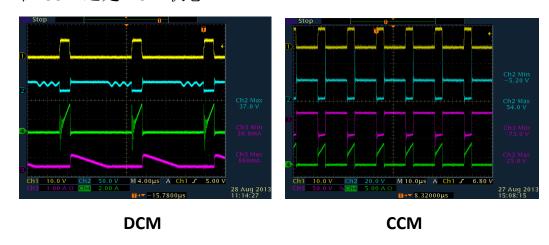

反激电路波形分析

1. 单管反激电路基本结构

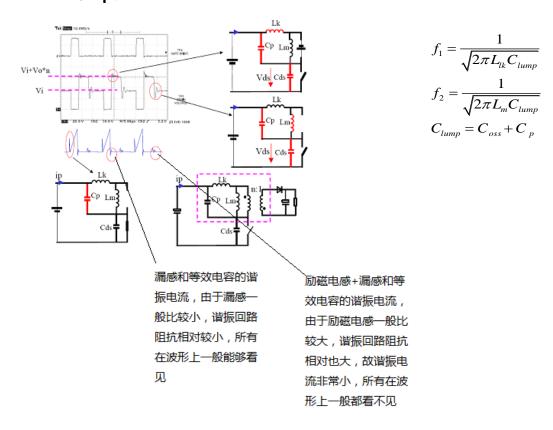
基本工作原理 ON/OFF(省略)

2. 两种模式 DCM 和 CCM


(1) CCM 和 DCM 模式判断依据

CCM 和 DCM 的判断,不是按照初级电流是否连续来判断的。而是根据初、次级的电流合成来判断的。只要初、次级电流不同是为零,就是 CCM 模式。而如果存在初、次级电流同时为零的状态,就是 DCM 模式。介于二者之间的就是 BCM 模式。

(2) 两种模式在波形上的区别

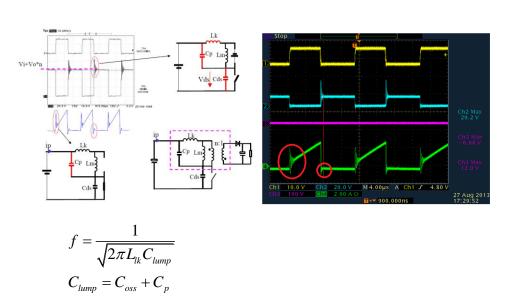

- ➤ 变压器初级电流,CCM 模式是梯形波,而 DCM 模式是三角波。
- > 次级整流管电流波形, CCM 模式是梯形波, DCM 模式是三角波。
- ➤ MOS 的 Vds 波形,CCM 模式,在下一个周期开通前,Vds 一直维持在 Vin+Vf 的平台上。而 DCM 模式,在下一个周期开通前,Vds 会从 Vin+Vf 这个平台降下来发生阻尼振荡。(Vf 次级反射到原边

电压)。因此我们就可以很容易从波形上看出来反激电源是工作在 CCM 还是 DCM 状态

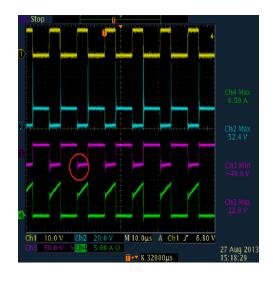
3. MOSFET 在开通和关断瞬间寄生参数对波形的影响

(1) DCM (Vds, Ip)

在 MOS 关断的时候, Vds 的波形显示, MOS 上的电压远超过 Vin+Vf! 这是因为,变压器的初级有漏感。漏感的能量是不会通过磁芯耦合到次级的。那么 MOS 关断过程中,漏感电流也是不能突变的。漏感的电流变化也会产生感应电动势,这个感应电动势因为无法被次级耦合而箝位,电压会冲的很高。那么为了避免


MOS 被电压击穿而损坏,所以我们在初级侧加了一个 RCD 吸收缓冲电路,把漏感能量先储存在电容里,然后通过 R 消耗掉

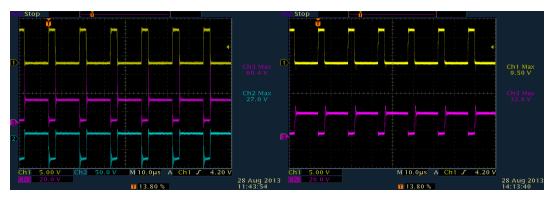
当次级电感电流降到了零。这意味着磁芯中的能量已经完全释放了。那么因为二管电流降到了零,二极管也就自动截止了,次级相当于开路状态,输出电压不再反射回初级了。由于此时 MOS 的 Vds 电压高于输入电压,所以在电压差的作用下,MOS 的结电容和初级电感发生谐振。谐振电流给 MOS 的结电容放电。Vds 电压开始下降,经过 1/4 之一个谐振周期后又开始上升。由于 RCD 箝位电路以及其它寄生电阻的存在,这个振荡是个阻尼振荡,幅度越来越小。


f1 比 f2 大很多(从波形上可以看出),这是由于漏感一般相对较小;同时由于 f1 所在回路阻抗比较小,谐振电流较大,所以能够很快消耗在等效电阻上,这也就是为什么 f1 所在回路很快就谐振结束的原因!(具体谐振时间可以通过等效模型求解二次微分方程估算)

(2) CCM (Vds, Ip)

(3) 其他一些波形分析(次级输出电压 Vs, Is, Vds)

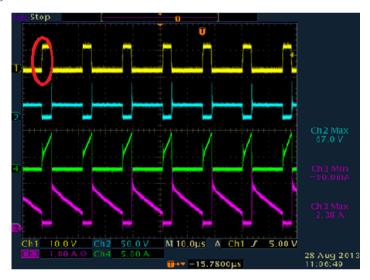
CCM (ch3 为变压器副边 Vs 波形)


DCM (ch3 为变压器副边 Vs 波形)

不管是在 CCM 模式还是 DCM 模式,在 mosfet 开通 on 时刻,变压器副边都有震荡。主要原因是初次级之间的漏感+输出肖特基(或快恢复)结电容+输出电容谐振引起,在 CCM 模式下与肖特基的反向恢复电流也一些关系。故一般在输出肖特基上并联一个 RC 来吸收,使肖特基应力减小。

CCM (ch3 为变压器副边 Is 波形)DCM (ch3 为变压器副边 Is 波形)不管是在 CCM 模式还是 DCM 模式,在 mosfet 关断 off 时刻,变压器副边电流 Is 波形都有一些震荡。主要原因是次级电感+肖特基接电容+输出电容之间的谐振造成的

(4) RCD 吸收电路对 Vds 的影响

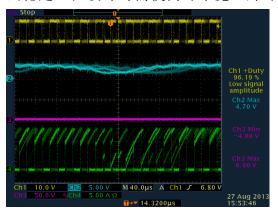


Ch3=Vds(加吸收前)

Ch3=Vds(加吸收后)

在 MOS 关断的时候,Vds 的波形显示,MOS 上的电压远超过 Vin+Vf! 这是因为,变压器的初级有漏感。漏感的能量是不会通过磁芯耦合到次级的。那么 MOS 关断过程中,漏感电流也是不能突变的。漏感的电流变化也会产生感应电动势,这个感应电动势因为无法被次级耦合而箝位,电压会冲的很高。那么为了避免 MOS 被电压击穿而损坏,所以我们在初级侧加了一个 RCD 吸收缓冲电路,把漏感能量先储存在电容里,然后通过 R 消耗掉

(5) Vgs 波形



为使 mosfet 在开通时间的上升沿比较陡,进而提高效率。在布线时驱动信号尽量通过双线接到 mosfet 的 G、S 端,同时连接尽量短些。

4. 设计时需注意点

- (1) 尽量使反激电路最大工作占空比小于 50%, 若要使占空比工作在大于 50%, 为避免次谐波震荡, 需加上斜率补偿, 此外还需注意变压器能否磁复位。由于 mosfet 导通和关断需要一定的时间, 同一批次的变压器单体之间也有差异, 建议反激最大工作占空比小于 45%。
- (2) 反激的功率地和控制地的连接须注意单点接地,特别是在哪个地方进行单点接地需慎重。为有效地吸收地噪声(mosfet 的开通和关断),输入电容的一个脚尽量靠近共地点。

(3)由于电压外环的 PID 输出与电流内环进行比较来决定占空比,事实上 PID 的输出不是一条绝对直线,它是在直流的基础上叠加了一个低频分量,为保证输出稳定,在设计时需使内环带宽比外环带宽大于 10 倍以上。

Ch2=电压外环 PID 输出

上述波形一般在开始调环路或者在输入 VIN 比较高时经常会出现, 主要原因是外环的带宽太快了, 为使系统稳定, 需减小带宽, 一般可通过减小比例 P 或者增大积分 C 来解决。