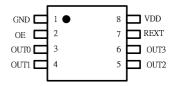
LED Driver Datasheet

NU514L


4 channel constant current LED driver

Features

- 4 constant current sink outputs
- 12 ~ 200mA channel sink current
- 3V to 12V supply voltage
- Excellent current sink uniformity channel to channel: < ± 4% chip to chip: < ± 4%
- OE pulse width: 120ns
- Schmitt trigger input
- 160°C thermal half power protect
- Maximum output voltage: 17V
- -40° C ~ $+85^{\circ}$ C operating temperature
- Green package

Package Type

• SOP8

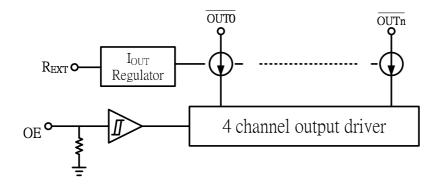
Product Description

NU514L is a 4 channels constant current sink driver used for LED lighting. NU514L can sink 4 channels constant current simultaneously by the control of a single OE pin. The sink current of output channels can be set easily by an external resistor Rext. Each output channel can be connected with each other to gain higher current driving capability. With this parallel-able output capability, one NU514L can drive constant current from 12mA to 800mA being used to most types of LEDs.

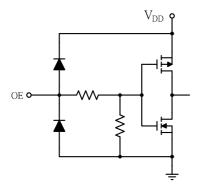
Terminal Description

Pin name	Function
V_{DD}	3V~12V power supply
GND	Chip ground pin
R_{EXT}	Current setting resistor
OE	Output enable
OUT0 ~ OUT3	Constant current sink terminals

Applications


- General LED Lighting
- Decoration lighting for architecture
- LCD back lighting
- Street lamp

Protection Circuit


• 8KV output channel ESD protection

- 1 - Ver.01.3

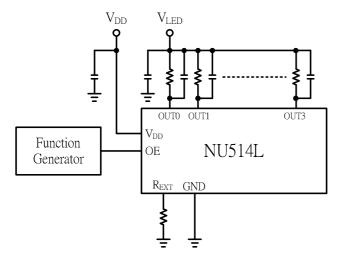
Block Diagram

Equivalent Circuits for OE Input

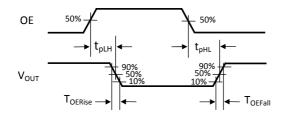
Maximum Ratings (T = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V_{DD}	0~16	V
Input pin voltage	V _{IN}	-0.2 ~ V _{DD}	V
Output current	I _{OUT}	240	mA/Channel
Output voltage	V _{OUT}	-0.2 ~ 24.0	V
Total GND terminals current	I _{GND}	1000	mA
Power Dissipation (On PCB)	PD	1	W
Thermal Resistance	$R_{TH(j\text{-a})}$	100	°C /W
Junction temperature	T _j	135	°C
Operating temperature (Ambient)	T _{OPR}	-40~+85	°C
Storage temperature	T _{STG}	-55~+150	°C

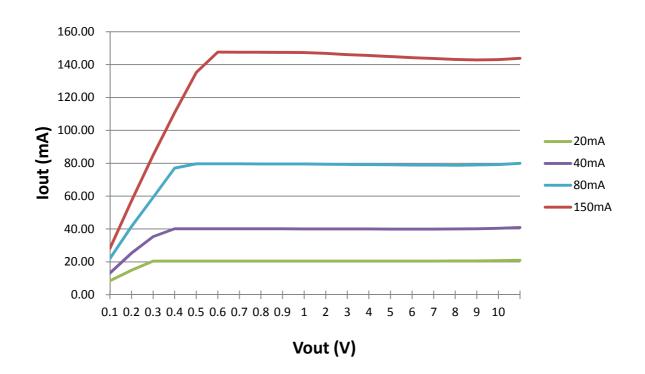
Electrical Characteristics and Recommended Operating Conditions


Characte	eristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply vo	oltage	$V_{ m DD}$	Room Temp.	3	-	12	V
Output port s voltag	-	V_{OUT}	$I_{OUT} = 0mA$	-	ī	17	V
Output cu	ırrent	I_{OUT}	OUTn = 1V	12	ı	200	mA
Output lea	akage	I_{LEAK}	$V_0 = 7V$ and channel off	-	1	0.5	uA
Channel curr (Outpu		$\mathrm{dI}_{\mathrm{OUT1}}$	$I_{OUT} = 80$ mA, $V_{OUT} = 1$ V	-	-	<u>±</u> 4	%
Center curre (IC)	nt skew	$\mathrm{dI}_{\mathrm{OUT2}}$	$I_{OUT} = 80$ mA, $V_{OUT} = 1$ V	-	-1	<u>±</u> 4	%
Line regu	lation	$\%/dV_{DD}$	$R_{\text{EXT}} = 900 \Omega$, $V_{\text{OUT}} = 1 \text{V}$	-	-	±1	%
Load regu	lation	%/dV _{OUT}	$R_{\rm EXT} = 900 \Omega$	-	-	±1	%
Input vol	togo	$V_{ m IH}$		$0.7V_{DD}$	-	-	V
Input voi	itage	$V_{ m IL}$		-	ı	$0.3V_{DD}$	V
Thermal p (Junction tem		T_{HalfP}	Half current output	-	160	-	°C
Pull down resi	istor (OE)	R_{PU}		400	500	700	ΚΩ
		$I_{DD1(off)}$	R_{EXT} = Open, all output off	-	-	1	mA
All output "Off" Supply current	$I_{\mathrm{DD2(off)}}$	$R_{EXT} = 900 \Omega$, all output off	-	4	-	mA	
	On	$I_{DD3(off)} \\$	$R_{\rm EXT} = 600 \Omega$, all output off	-	5	-	mA
	All output	I _{DD1(on)}	$R_{EXT} = 900\Omega$, all output on	-	5	-	mA
	"On"	I _{DD2(on)}	$R_{EXT} = 600 \Omega$, all output on	-	6	-	mA

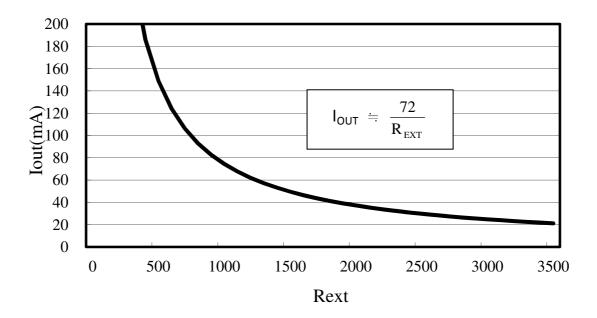
Switching Characteristics


Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time (OE from "L" to "H")	t _{pLH}	$V_{DD}=4V$, $V_{OUT}=1V$, $I_{OUT}=80$ mA, OE= $0V \rightarrow 4V$	300	1	450	nS
Output current rising time (OE from "L" to "H")	t _{OERise}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =80mA, OE= 0V \rightarrow 4V	100	-	250	nS
Propagation Delay Time (OE from "H" to "L")	t _{pHL}	$V_{DD}=4V$, $V_{OUT}=1V$, $I_{OUT}=80$ mA, OE= $4V \rightarrow 0V$	300	-	450	nS
Output current falling time (OE from "H" to "L")	t _{OEFall}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =80mA, OE=4V \rightarrow 0V	100	-	250	nS

- 3 -

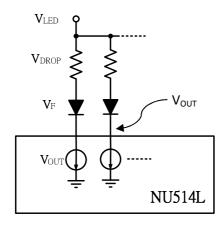

Test Circuit for Switching Characteristics

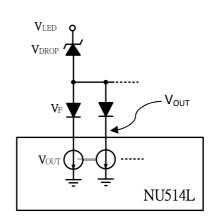
Timing Waveforms


I/V curve

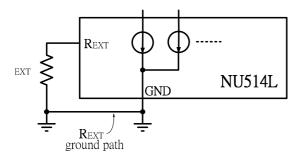
- 4 - Ver.01.3

Output Current Setting

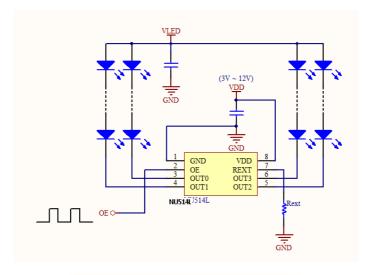

The output current of each channel of NU514L is set by an external resistor (R_{EXT}). The relationship between output current and external resistor is shown in the figure or calculated from the equation following.

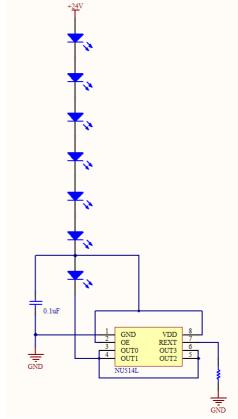


Application Notes


- In order to maximize the heat dissipation capability and keep the NU514L function normally, the thermal pad under SOP package should be soldered to the PCB and connect to the ground net of system. More the ground area, more the heat dissipation capability that NU514L relies on.
- The V_{OUT} should be as low as possible near the knee point of the output I/V curve to minimize the heat generation from NU514L. An external resistors or zener diodes can be used to minimize V_{OUT} in the output current path. The suggestion V_{OUT} voltage is between 0.4v to 1v.

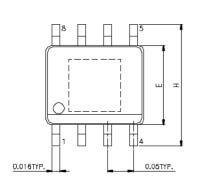
Ex:
$$V_{OUT} = V_{LED} - (V_{DROP} + V_F)$$

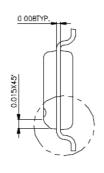


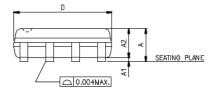


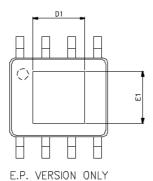
The R_{EXT} ground path should be as short and wide as possible to minimize the chip current skew.

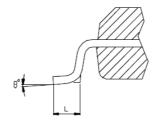
Typical Application Circuit






- 6 -


Ver.01.3


Package Dimensions

SYMBOLS	MIN.	MAX.
A	0.053	0.069
A1	0.002	0.006
A2	_	0.059
D	0.189	0.196
Ε	0.150	0.157
Н	0.228	0.244
L	0.016	0.050
t)°	0	8

UNIT : INCH

THERMALLY ENHANCED DIMENSIONS

PAD SIZE	E1 D1	
90X90E	0.081 REF	0.081 REF
95X130E	0.086 REF	0.117 REF

UNIT: INCH

Restrictions on product use

• This document is a preliminary specification data sheet. NUMEN Tech. reserves the right to update these specifications in the future.

- The information contained herein is subject to change without notice.
- NUMEN Technology will continually working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing NUMEN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such NUMEN products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that NUMEN products are used within specified operating ranges as set forth in the most recent NUMEN products specifications.
- The NUMEN products listed in this document are intended for usage in general electronics applications (lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These NUMEN products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of NUMEN products listed in this document shall be made at the customer's own risk.