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Abstract – A Digital Down Converter (DDC) using four times 

intermediate frequency (4fIF) sampling is analyzed to simplify the 

required hardware. The DDC is controlled by a two bit counter. 

One counter bit controls the mixer, implemented as a two input 

multiplexer, while the other bit controls data flow in direct or 

transposed form finite impulse response (FIR) filters. The 

resulting FIR filters significantly reduce the number of 

multipliers and adders required while still allowing additional 

filter reduction techniques to be applied.  

I. INTRODUCTION 

The digital down converter (DDC) is an architecture that 
shifts an intermediate frequency input signal down the 
spectrum to a lower frequency, or to baseband. The input 
comes from an analog-to-digital converter (ADC) and is 
centered at the intermediate frequency, fIF. It is particularly 
useful because once the signal is shifted down the spectrum 
and filtered for reshaping and anti-aliasing purposes, the 
sampling rate can be reduced so that intensive digital signal 
processing (DSP) algorithms can process the data [1]. 

The general form of a DDC, shown in Fig. 1, requires a 
multiplication for the mixer stage and many more in certain 
filter implementations. Multipliers are very costly hardware: 
large area, limited speed, and high power consumption, 
especially in high-rate implementations. Furthermore, better 
filter performance requires even more hardware, usually due to 
increased filter length. For these reasons, hardware-efficient 
DDC architectures are extensively pursued. This paper 
proposes a major hardware reduction in the filter stage which is 
achievable because of the chosen mixer implementation.  

II. BACKGROUND OF DDC IMPLEMENTATIONS AND 

REDUCTIONS 

A. Mixer Stage 

One way to implement the digital mixer is by generating 
the sine and cosine values using a direct digital synthesizer 
(DDS), which operates as the local oscillator (LO). Without the 

need for a changing LO frequency, fLO, the DDS is not a very 
efficient choice for implementing the LO. 

To save area, the LO may be implemented as a lookup 
table. The number of unique sample values per period 
determines the size of the lookup table. Using a lookup table 
costs less hardware than the DDS, but the mixer still requires a 
multiplier. Sampling the LO at 4fIF results in the four values 
illustrated in Fig. 2 being outputted for every period of fIF. 

It can be seen that the mixer output for either I (in phase) or 
Q (quadrature) signal will simply be zero or ±X(t), where X(t) 
is the input to the mixer from the ADC at time t in two‟s 
complement representation. Furthermore, when the in-phase 
LO output is non-zero, the quadrature LO output is zero, and 
vice versa. Fig. 3(a) shows the mixer with the LO implemented 
as outputting each value from memory.  

References [2,3,4,5] use 4fIF sampling, and [2] implements 
the mixer as a simple multiplexer. This implementation is 
possible because, besides control logic, zero and X(t) require 
no additional logic to output; -X(t) simply requires a two‟s 
complement conversion. Thus, a multiplierless mixer 
architecture can be realized using a multiplexer controlled by a 
two bit counter. The most significant bit, CNT1, of the counter 
will be a square wave operating at two times fIF. The least 
significant bit, CNT0, of the counter will be a square wave 
operating at four times fIF. Odd-numbered clock cycles (first, 
third, etc.) will have CNT0 equal to „0‟, and even-numbered 
clock cycles (second, fourth, etc.) will have CNT0 equal to „1‟. 
With this implementation, shown in Fig. 3(b), CNT1 and 
CNT0 are used as control logic to avoid the use of a multiplier 
in the mixer stage.  

Later in this paper, filter architecture is changed so that 
zero is no longer a necessary input to the mixer multiplexer. 
Instead, the filter uses CNT0 to control data to achieve the 
equivalent function. Fig. 3(c) shows the mixer implemented 
without zero as an input. 

 
Fig. 2. Local oscillator values when fLO = 4fIF 

 
Fig. 1. General DDC architecture 
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B. Filter Stage 

For I/Q mixing, to maintain the phase relationship between 
in-phase and quadrature signals, any operation performed on 
the in-phase signal must also be performed on the quadrature 
signal, including filtering. Conventional DDC architectures use 
duplicate filters, one for each I/Q signal, to ensure the same 
operations are performed on each signal, doubling the required 
hardware for filtering the mixer‟s output. 

Depending on the desired spurious-free dynamic range 
(SFDR) and transition width, the filter can demand a large 
amount of hardware resources. Table I shows estimated 
required hardware based on Simulink‟s Low Pass Filter block 
using a single-rate, equiripple design with a 1 dB passband 
ripple and 12 MHz passband edge.  

As can be seen in Table I, designing an efficient digital 
filter that meets the performance requirements is paramount to 
saving hardware. However, regardless of technique, the filters 
will account for the majority of the DDC hardware. This paper 
focuses on reducing hardware in direct and transposed form 
finite impulse response (FIR) filters.  

Reference [2] reduces hardware in its filters by extracting 
filter blocks that are common to different stages. Reference [6] 
reduces hardware in a transposed FIR filter design by applying 
a novel subexpression elimination algorithm to optimize the 
multiplier block, which replaces multipliers with adders due to 
multiplication by a constant (each new input X(t)). However, 
the filter hardware can be further reduced, in both examples, 
due to the chosen mixer implementation.  

This paper introduces a very significant reduction of 
hardware in the filter stage by analyzing the computations of 
each block in the filter and removing excess blocks due to 
unnecessary computations and storage. Reference [5] makes a 

similar reduction, but uses an interpolated FIR filter 
implementation which increases the number of delay elements, 
whereas the proposed design is given as direct/transposed form 
FIR and does not introduce extra delays. The design in [5] also 
uses only half of the coefficients for either I or Q channel, 
whereas the proposed design uses all of the coefficients for 
both channels. Furthermore, this reduction technique does not 
interfere with many other hardware reductions, including those 
in [2] and [6]. Direct and transposed form FIR filter design 
reductions will be discussed, and the maintainability of 
aforementioned existing reductions will be explained. 

III.  PROPOSED METHOD OF HARDWARE REDUCTION 

A. Direct Form FIR Reduction 

Consider a direct form FIR filter implementation of a low 
pass filter (LPF) with four taps for simplicity, shown in Fig. 4. 
Due to sampling fLO at 4fIF, many zeros are inputted to the 
filter, and the filter hardware may be reduced as a result. 

The filter‟s output, Yn, can be expressed as (1), where n is 
the current clock cycle and Ci denotes coefficient i. The output 
of the mixer for odd-numbered cycles will be zero for the 
mixed Q signal, while the output of the mixer for even-
numbered cycles will be zero for the mixed I signal. Thus, (2) 
shows the in-phase filter output during odd-numbered cycles as 
well as the quadrature filter output during even-numbered 
cycles. Equation (3) shows the in-phase filter output during 
even-numbered cycles as well as the quadrature filter output 
during odd-numbered cycles. Thus, the output for an FIR filter 
of even-numbered length, M, is given in (4) and (5). Equations 
(4) and (5) alternate each clock cycle to simulate zeros 
propagating through the filter; this means that Xn in (4) will be 
Xn-1 in (5) due to the new clock cycle and mixer output. 

 Yn = Xn*C1 + Xn-1*C2 + Xn-2*C3 + Xn-3*C4 (1) 

 Yn = Xn*C1+0*C2+Xn-2*C3+0*C4 = Xn*C1 + Xn-2*C3 (2) 

 Yn = 0*C1+Xn-1*C2+0*C3+Xn-3*C4 = Xn-1*C2 + Xn-3*C4 (3) 

  Yn = Xn*C1 + Xn-2*C3 + … + Xn-(M-2)*CM-1 (4) 

  Yn = Xn-1*C2 + Xn-3*C4 + … + Xn-(M-1)*CM (5) 

The non-zero values of X are simply switching coefficients 
for multiplications. If the multipliers and adders are reused to 
process the previous X with a different coefficient during clock 
cycles when X is zero, filter hardware can be greatly reduced. 
This is achieved by clocking in only non-zero inputs to the 
filter and switching coefficients for multiplication depending 
on the value of CNT0. Finally, the reduced hardware 

 
Fig. 4. Direct FIR filter with four taps. 

TABLE I. HARDWARE REQUIREMENTS FOR LOW PASS FILTER 

Transition 

Width (MHz)/ 

Stopband 

Attenuation (dB) 

Hardware Required 

Adders Multipliers States 

3 / 50 63 64 63 

3 / 60 73 74 73 

5 / 50 38 39 38 

5 / 60 45 46 45 

 

 
Fig. 3. Optimization of mixer for 4fIF sampling  
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equivalent of the direct form FIR filter is shown in Fig. 5. For 
the in-phase filter, the enable pin (En) for the registers will be 
CNT0 inverted (CNT0_BAR), and the select line (S) will be 
CNT0. For the quadrature filter, enable will be CNT0, and the 
select line will be CNT0_BAR. The differences of enable pins 
and select lines between filters is reflective of the odd-even 
relationship of non-zero values for in-phase and quadrature 
signals. 

B. Transposed Form FIR Reduction 

Now consider a transposed form FIR filter implementation 
of the LPF, again with four taps for simplicity, shown in Fig. 6. 
Equations (1), (2), (3), (4), and (5) are true for the transposed 
form FIR filter as well. The reduction of the hardware can be 
done differently, however, due to the placement of the 
registers.  

Recall that the mixer output will be zero for the mixed Q 
signal when CNT0 is „0‟, while the output of the mixer will be 
zero for the mixed I signal when CNT0 is „1‟. This results in 
all multipliers in one filter multiplying by zero while the other 
filter multiplies non-zero values. Instead, the multipliers can be 
shared between the in-phase and quadrature filters by adding 
an enable feature to the registers for each filter. The multipliers 
will multiply every Mixed I/Q value from Fig. 3(c) by the 
coefficients and use CNT0 to output the products to the 
appropriate filter. When CNT0 is „0‟, the multiplier outputs 
will go to the in-phase filter, and when CNT0 is „1‟, the 
multiplier outputs will go to the quadrature filter. Sharing the 

multipliers halves the required multipliers.  

 The number of adders can also be reduced because in any 
one given clock cycle, only half of the coefficients (even or 
odd-numbered coefficients) are necessary for additions, and 
during the next clock cycle, the other half will be used. The 
reduced hardware equivalent of the transposed form FIR filter 
is shown in Fig. 7. The registers with enable pins prevent 
values that belong in the opposite filter from being processed. 
The enable pins and select lines are assigned as previously 
mentioned in the direct form reduction section. 

The transposed form FIR reduction is significant 
independently of the direct form because it allows for other 
multiplier reductions such as multiplier block implementation 
and optimization, discussed in [6]. 

C. Maintainability of Existing Reductions 

The removal of common filter blocks in [2] is still possible 
because the reduced hardware equivalents introduced in this 
paper do not alter the performances of the filters. The outputs 
are exactly the same as the full, standard forms. The common 
filter blocks that [2] removes will simply contain less 
hardware. Combining the introduced technique with the 
reduction in [2] will yield an even more hardware-efficient 
design. 

Using the reduced hardware equivalent of the transposed 
form FIR filter, a multiplier block may still be implemented 
and optimized by the subexpression elimination algorithm in 
[6]. Again, the combination of the introduced technique and the 
reduction in [6] will yield a design with even less required 
hardware. In this case, an entirely multiplierless architecture 
for the DDC is possible. 

D. Mixer Reduction Revisited 

 Since the reduced filters process zeros without explicitly 
receiving them as inputs, the mixer no longer needs to output 
zeros. Instead, the mixer only needs to output ±X(t). Finally, 
the mixer is a two input multiplexer with positive and negative 
X(t) for inputs. CNT1 will determine the sign of X(t) for the 
mixer output, and CNT0 will control the flow of data in each 
filter to achieve the same overall filter function without the 
extra hardware. 

IV. EXTENDING TO OTHER DDC APPLICATIONS 

The reductions in these proposed designs are based on the 
general equations (4) and (5). For other DDC applications to 
use this reduction, the sample rate must be 4fIF. For filters with 
an odd number of coefficients, an extra adder and register are 

 
Fig. 7. Reduced transposed FIR filter with M taps. 

 
Fig. 5. Reduced direct FIR filter with M taps. 

 
Fig. 6. Transposed FIR filter with four taps. 
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necessary, but the adder may be shared between I and Q. 
However, sharing the additional adder requires control logic 
similar to the rest of the reduced filters. Changing the 
precision of coefficients, adders, or multipliers can be done 
independently of the structures depicted in the block diagrams. 

Advantageously, scaling the reduced filters is very simple. 
The collection of blocks in Fig. 5 and Fig. 7 after the ellipses 
may be replicated as many times as is necessary to achieve the 
correct filter length (within one tap in the case of odd number 
of coefficients/taps).  

V. EXPERIMENT RESULTS 

Table II shows the required hardware blocks for the full 
direct, reduced direct, full transposed, and reduced transposed 
form FIR filters using 64 taps. As can be seen, the hardware 
reductions are very significant. Most importantly, the number 
of multipliers and adders has been significantly reduced.  

Input to the DDC for the case included in this report is a 
sine wave operating at 34 MHz, outputting values eight bits 
wide to simulate an eight bit ADC output. The input frequency 
bandwidth is 24 MHz and centered at 26 MHz. The hardware 
reductions were tested and verified using the aforementioned 
64 tap filters. The filter coefficients were determined by 
applying a hamming window to the ideal coefficients of a low 
pass filter which were then truncated to twelve bits. The 
output signal frequency is determined by (6). 

 fout = fin – fLO = 34 MHz – 26 MHz = 8 MHz (6) 

All four filters performed identically, demonstrating that 
the reduced architectures are truly equivalent to the full, 

standard form architectures. Equation (6) also shows a 
calculated expected output at 8 MHz which is confirmed in 
Fig. 8 which shows the FFT result of the DDC in-phase output 
signal after the proposed reduced direct form filter.  

The worst case, when fin results in fout at the edge of the 
passband, is shown in Fig. 9. The input for the worst case test 
was 38 MHz, resulting in an output frequency of 12 MHz, the 
edge of the 24 MHz bandwidth. Different input frequency 

signals were tested and verified; the DDC works as expected.  

VI. CONCLUSION 

In this paper, a simplified mixer architecture sampling at 
four times the intermediate frequency is analyzed to reduce 
hardware. Reduced architectures for direct and transposed 
form FIR filters are presented and compared to the full 
hardware equivalent. The architecture is implemented, tested, 
and verified using Xilinx Sysgen. 

Unlike many other hardware reductions, this hardware 
reduction may be combined with several other techniques. 
Using the resulting DDC architecture yields a very hardware 
efficient design and presents an opportunity for further 
research in extremely hardware-efficient DDC designs. 
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Fig. 8. FFT of in-phase filtered DDC output for fin = 34 MHz. 

TABLE II. REDUCED FIR FILTER HARDWARE COMPARISONS 

Filter 
Hardware Required for 64 Taps 

Multiplier Adder Register Multiplexer 

Full Direct Form 128 126 126 0 

Proposed Reduced 
Direct Form 

64 62 64 128 

Full Transposed Form 128 126 126 0 

Proposed Reduced 
Transposed Form 

64 62 188 64 

 

 
Fig. 9. FFT of in-phase filtered DDC output for worst case, fin=38 MHz and 

fout=12 MHz. 
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