
Digital Down Converter Optimization

Joe Gerhardt and Saiyu Ren

Department of Electrical Engineering, Wright State University, USA

{gerhardtjoe@gmail.com, saiyu.ren@wright.edu}

Abstract – A Digital Down Converter (DDC) using four times

intermediate frequency (4fIF) sampling is analyzed to simplify the

required hardware. The DDC is controlled by a two bit counter.

One counter bit controls the mixer, implemented as a two input

multiplexer, while the other bit controls data flow in direct or

transposed form finite impulse response (FIR) filters. The

resulting FIR filters significantly reduce the number of

multipliers and adders required while still allowing additional

filter reduction techniques to be applied.

I. INTRODUCTION

The digital down converter (DDC) is an architecture that
shifts an intermediate frequency input signal down the
spectrum to a lower frequency, or to baseband. The input
comes from an analog-to-digital converter (ADC) and is
centered at the intermediate frequency, fIF. It is particularly
useful because once the signal is shifted down the spectrum
and filtered for reshaping and anti-aliasing purposes, the
sampling rate can be reduced so that intensive digital signal
processing (DSP) algorithms can process the data [1].

The general form of a DDC, shown in Fig. 1, requires a
multiplication for the mixer stage and many more in certain
filter implementations. Multipliers are very costly hardware:
large area, limited speed, and high power consumption,
especially in high-rate implementations. Furthermore, better
filter performance requires even more hardware, usually due to
increased filter length. For these reasons, hardware-efficient
DDC architectures are extensively pursued. This paper
proposes a major hardware reduction in the filter stage which is
achievable because of the chosen mixer implementation.

II. BACKGROUND OF DDC IMPLEMENTATIONS AND

REDUCTIONS

A. Mixer Stage

One way to implement the digital mixer is by generating
the sine and cosine values using a direct digital synthesizer
(DDS), which operates as the local oscillator (LO). Without the

need for a changing LO frequency, fLO, the DDS is not a very
efficient choice for implementing the LO.

To save area, the LO may be implemented as a lookup
table. The number of unique sample values per period
determines the size of the lookup table. Using a lookup table
costs less hardware than the DDS, but the mixer still requires a
multiplier. Sampling the LO at 4fIF results in the four values
illustrated in Fig. 2 being outputted for every period of fIF.

It can be seen that the mixer output for either I (in phase) or
Q (quadrature) signal will simply be zero or ±X(t), where X(t)
is the input to the mixer from the ADC at time t in two‟s
complement representation. Furthermore, when the in-phase
LO output is non-zero, the quadrature LO output is zero, and
vice versa. Fig. 3(a) shows the mixer with the LO implemented
as outputting each value from memory.

References [2,3,4,5] use 4fIF sampling, and [2] implements
the mixer as a simple multiplexer. This implementation is
possible because, besides control logic, zero and X(t) require
no additional logic to output; -X(t) simply requires a two‟s
complement conversion. Thus, a multiplierless mixer
architecture can be realized using a multiplexer controlled by a
two bit counter. The most significant bit, CNT1, of the counter
will be a square wave operating at two times fIF. The least
significant bit, CNT0, of the counter will be a square wave
operating at four times fIF. Odd-numbered clock cycles (first,
third, etc.) will have CNT0 equal to „0‟, and even-numbered
clock cycles (second, fourth, etc.) will have CNT0 equal to „1‟.
With this implementation, shown in Fig. 3(b), CNT1 and
CNT0 are used as control logic to avoid the use of a multiplier
in the mixer stage.

Later in this paper, filter architecture is changed so that
zero is no longer a necessary input to the mixer multiplexer.
Instead, the filter uses CNT0 to control data to achieve the
equivalent function. Fig. 3(c) shows the mixer implemented
without zero as an input.

Fig. 2. Local oscillator values when fLO = 4fIF

Fig. 1. General DDC architecture

1015978-1-4799-0066-4/13/$31.00 ©2013 IEEE

B. Filter Stage

For I/Q mixing, to maintain the phase relationship between
in-phase and quadrature signals, any operation performed on
the in-phase signal must also be performed on the quadrature
signal, including filtering. Conventional DDC architectures use
duplicate filters, one for each I/Q signal, to ensure the same
operations are performed on each signal, doubling the required
hardware for filtering the mixer‟s output.

Depending on the desired spurious-free dynamic range
(SFDR) and transition width, the filter can demand a large
amount of hardware resources. Table I shows estimated
required hardware based on Simulink‟s Low Pass Filter block
using a single-rate, equiripple design with a 1 dB passband
ripple and 12 MHz passband edge.

As can be seen in Table I, designing an efficient digital
filter that meets the performance requirements is paramount to
saving hardware. However, regardless of technique, the filters
will account for the majority of the DDC hardware. This paper
focuses on reducing hardware in direct and transposed form
finite impulse response (FIR) filters.

Reference [2] reduces hardware in its filters by extracting
filter blocks that are common to different stages. Reference [6]
reduces hardware in a transposed FIR filter design by applying
a novel subexpression elimination algorithm to optimize the
multiplier block, which replaces multipliers with adders due to
multiplication by a constant (each new input X(t)). However,
the filter hardware can be further reduced, in both examples,
due to the chosen mixer implementation.

This paper introduces a very significant reduction of
hardware in the filter stage by analyzing the computations of
each block in the filter and removing excess blocks due to
unnecessary computations and storage. Reference [5] makes a

similar reduction, but uses an interpolated FIR filter
implementation which increases the number of delay elements,
whereas the proposed design is given as direct/transposed form
FIR and does not introduce extra delays. The design in [5] also
uses only half of the coefficients for either I or Q channel,
whereas the proposed design uses all of the coefficients for
both channels. Furthermore, this reduction technique does not
interfere with many other hardware reductions, including those
in [2] and [6]. Direct and transposed form FIR filter design
reductions will be discussed, and the maintainability of
aforementioned existing reductions will be explained.

III. PROPOSED METHOD OF HARDWARE REDUCTION

A. Direct Form FIR Reduction

Consider a direct form FIR filter implementation of a low
pass filter (LPF) with four taps for simplicity, shown in Fig. 4.
Due to sampling fLO at 4fIF, many zeros are inputted to the
filter, and the filter hardware may be reduced as a result.

The filter‟s output, Yn, can be expressed as (1), where n is
the current clock cycle and Ci denotes coefficient i. The output
of the mixer for odd-numbered cycles will be zero for the
mixed Q signal, while the output of the mixer for even-
numbered cycles will be zero for the mixed I signal. Thus, (2)
shows the in-phase filter output during odd-numbered cycles as
well as the quadrature filter output during even-numbered
cycles. Equation (3) shows the in-phase filter output during
even-numbered cycles as well as the quadrature filter output
during odd-numbered cycles. Thus, the output for an FIR filter
of even-numbered length, M, is given in (4) and (5). Equations
(4) and (5) alternate each clock cycle to simulate zeros
propagating through the filter; this means that Xn in (4) will be
Xn-1 in (5) due to the new clock cycle and mixer output.

 Yn = Xn*C1 + Xn-1*C2 + Xn-2*C3 + Xn-3*C4 (1)

 Yn = Xn*C1+0*C2+Xn-2*C3+0*C4 = Xn*C1 + Xn-2*C3 (2)

 Yn = 0*C1+Xn-1*C2+0*C3+Xn-3*C4 = Xn-1*C2 + Xn-3*C4 (3)

 Yn = Xn*C1 + Xn-2*C3 + … + Xn-(M-2)*CM-1 (4)

 Yn = Xn-1*C2 + Xn-3*C4 + … + Xn-(M-1)*CM (5)

The non-zero values of X are simply switching coefficients
for multiplications. If the multipliers and adders are reused to
process the previous X with a different coefficient during clock
cycles when X is zero, filter hardware can be greatly reduced.
This is achieved by clocking in only non-zero inputs to the
filter and switching coefficients for multiplication depending
on the value of CNT0. Finally, the reduced hardware

Fig. 4. Direct FIR filter with four taps.

TABLE I. HARDWARE REQUIREMENTS FOR LOW PASS FILTER

Transition

Width (MHz)/

Stopband

Attenuation (dB)

Hardware Required

Adders Multipliers States

3 / 50 63 64 63

3 / 60 73 74 73

5 / 50 38 39 38

5 / 60 45 46 45

Fig. 3. Optimization of mixer for 4fIF sampling

1016

equivalent of the direct form FIR filter is shown in Fig. 5. For
the in-phase filter, the enable pin (En) for the registers will be
CNT0 inverted (CNT0_BAR), and the select line (S) will be
CNT0. For the quadrature filter, enable will be CNT0, and the
select line will be CNT0_BAR. The differences of enable pins
and select lines between filters is reflective of the odd-even
relationship of non-zero values for in-phase and quadrature
signals.

B. Transposed Form FIR Reduction

Now consider a transposed form FIR filter implementation
of the LPF, again with four taps for simplicity, shown in Fig. 6.
Equations (1), (2), (3), (4), and (5) are true for the transposed
form FIR filter as well. The reduction of the hardware can be
done differently, however, due to the placement of the
registers.

Recall that the mixer output will be zero for the mixed Q
signal when CNT0 is „0‟, while the output of the mixer will be
zero for the mixed I signal when CNT0 is „1‟. This results in
all multipliers in one filter multiplying by zero while the other
filter multiplies non-zero values. Instead, the multipliers can be
shared between the in-phase and quadrature filters by adding
an enable feature to the registers for each filter. The multipliers
will multiply every Mixed I/Q value from Fig. 3(c) by the
coefficients and use CNT0 to output the products to the
appropriate filter. When CNT0 is „0‟, the multiplier outputs
will go to the in-phase filter, and when CNT0 is „1‟, the
multiplier outputs will go to the quadrature filter. Sharing the

multipliers halves the required multipliers.

 The number of adders can also be reduced because in any
one given clock cycle, only half of the coefficients (even or
odd-numbered coefficients) are necessary for additions, and
during the next clock cycle, the other half will be used. The
reduced hardware equivalent of the transposed form FIR filter
is shown in Fig. 7. The registers with enable pins prevent
values that belong in the opposite filter from being processed.
The enable pins and select lines are assigned as previously
mentioned in the direct form reduction section.

The transposed form FIR reduction is significant
independently of the direct form because it allows for other
multiplier reductions such as multiplier block implementation
and optimization, discussed in [6].

C. Maintainability of Existing Reductions

The removal of common filter blocks in [2] is still possible
because the reduced hardware equivalents introduced in this
paper do not alter the performances of the filters. The outputs
are exactly the same as the full, standard forms. The common
filter blocks that [2] removes will simply contain less
hardware. Combining the introduced technique with the
reduction in [2] will yield an even more hardware-efficient
design.

Using the reduced hardware equivalent of the transposed
form FIR filter, a multiplier block may still be implemented
and optimized by the subexpression elimination algorithm in
[6]. Again, the combination of the introduced technique and the
reduction in [6] will yield a design with even less required
hardware. In this case, an entirely multiplierless architecture
for the DDC is possible.

D. Mixer Reduction Revisited

 Since the reduced filters process zeros without explicitly
receiving them as inputs, the mixer no longer needs to output
zeros. Instead, the mixer only needs to output ±X(t). Finally,
the mixer is a two input multiplexer with positive and negative
X(t) for inputs. CNT1 will determine the sign of X(t) for the
mixer output, and CNT0 will control the flow of data in each
filter to achieve the same overall filter function without the
extra hardware.

IV. EXTENDING TO OTHER DDC APPLICATIONS

The reductions in these proposed designs are based on the
general equations (4) and (5). For other DDC applications to
use this reduction, the sample rate must be 4fIF. For filters with
an odd number of coefficients, an extra adder and register are

Fig. 7. Reduced transposed FIR filter with M taps.

Fig. 5. Reduced direct FIR filter with M taps.

Fig. 6. Transposed FIR filter with four taps.

1017

necessary, but the adder may be shared between I and Q.
However, sharing the additional adder requires control logic
similar to the rest of the reduced filters. Changing the
precision of coefficients, adders, or multipliers can be done
independently of the structures depicted in the block diagrams.

Advantageously, scaling the reduced filters is very simple.
The collection of blocks in Fig. 5 and Fig. 7 after the ellipses
may be replicated as many times as is necessary to achieve the
correct filter length (within one tap in the case of odd number
of coefficients/taps).

V. EXPERIMENT RESULTS

Table II shows the required hardware blocks for the full
direct, reduced direct, full transposed, and reduced transposed
form FIR filters using 64 taps. As can be seen, the hardware
reductions are very significant. Most importantly, the number
of multipliers and adders has been significantly reduced.

Input to the DDC for the case included in this report is a
sine wave operating at 34 MHz, outputting values eight bits
wide to simulate an eight bit ADC output. The input frequency
bandwidth is 24 MHz and centered at 26 MHz. The hardware
reductions were tested and verified using the aforementioned
64 tap filters. The filter coefficients were determined by
applying a hamming window to the ideal coefficients of a low
pass filter which were then truncated to twelve bits. The
output signal frequency is determined by (6).

 fout = fin – fLO = 34 MHz – 26 MHz = 8 MHz (6)

All four filters performed identically, demonstrating that
the reduced architectures are truly equivalent to the full,

standard form architectures. Equation (6) also shows a
calculated expected output at 8 MHz which is confirmed in
Fig. 8 which shows the FFT result of the DDC in-phase output
signal after the proposed reduced direct form filter.

The worst case, when fin results in fout at the edge of the
passband, is shown in Fig. 9. The input for the worst case test
was 38 MHz, resulting in an output frequency of 12 MHz, the
edge of the 24 MHz bandwidth. Different input frequency

signals were tested and verified; the DDC works as expected.

VI. CONCLUSION

In this paper, a simplified mixer architecture sampling at
four times the intermediate frequency is analyzed to reduce
hardware. Reduced architectures for direct and transposed
form FIR filters are presented and compared to the full
hardware equivalent. The architecture is implemented, tested,
and verified using Xilinx Sysgen.

Unlike many other hardware reductions, this hardware
reduction may be combined with several other techniques.
Using the resulting DDC architecture yields a very hardware
efficient design and presents an opportunity for further
research in extremely hardware-efficient DDC designs.

REFERENCES

[1] C. Ruan, J. Hua, Z. Zheng, Y. Wu, and L. Meng, “A Study of Different
Matched Filter In Digital Down Converter,” 2012 Int. Conf. Systems and
Informatics, Yantai, China, 2012, pp. 2059-2063.

[2] M. Kim and S. Lee, “Design of Dual-Mode Digital Down Converter for
WCDMA and cdma2000,” ETRI Journal, vol. 26, no. 6, pp. 555-559,
Dec. 2004.

[3] Saiyu Ren; Billman, S.; Siferd, R., "Multiplier-less Digital Down
Converter in 90nm CMOS technology," Aerospace Electronics
Conference (NAECON), Proc. 2011 IEEE Nat., pp.316-319, July 2011.

[4] E. S. Malki, K. A. Shehata, and A. H. Madian, “Design of Triple-Mode
Digital Down Converter for WCDMA, CDMA2000 and GSM of
Software Defined Radio,” 2009 Int. Conf. Microelectronics, Marrakech,
Morocco, 2009, pp. 272-275.

[5] S. Jou, S. Wu, C. Wang, “Low-Power Multirate Architecture for IF
Digital Frequency Down Converter,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 45, pp. 1487-1494, Nov. 1998.

[6] S. Mirzaei, A. Hosangadi, and R. Kastner, “FPGA Implementation of
High Speed FIR Filters Using Add and Shift Method,” Int. Conf.
Computer Design, San Jose, California, 2006, pp. 308-313.

Fig. 8. FFT of in-phase filtered DDC output for fin = 34 MHz.

TABLE II. REDUCED FIR FILTER HARDWARE COMPARISONS

Filter
Hardware Required for 64 Taps

Multiplier Adder Register Multiplexer

Full Direct Form 128 126 126 0

Proposed Reduced
Direct Form

64 62 64 128

Full Transposed Form 128 126 126 0

Proposed Reduced
Transposed Form

64 62 188 64

Fig. 9. FFT of in-phase filtered DDC output for worst case, fin=38 MHz and

fout=12 MHz.

1018

