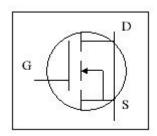
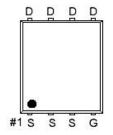
472

POWER MOSFET


The SD472 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. Standard product SD472 is Pb-free (meets ROHS & Sony 259 specifications). SD472L is a Green Product ordering option. SD472 and SD472L are electrically identical.


Product Summary

VDS (V) = 30V ID = 50A (VGS = 10V) RDS(ON) <6 m Ω (VGS = 10V)

RDS(ON) $\leq 9.5 \text{ m} \Omega$ (VGS = 4.5V)

Simplified Schematic

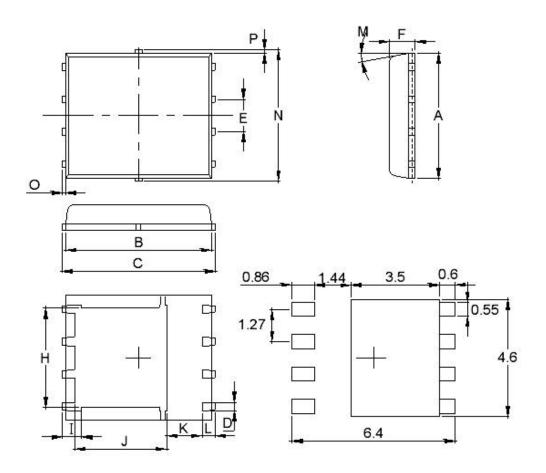
DFN5*6

Absolute Maximum Ratings TA=25°C unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		VDS	30	V	
Gate-Source Voltage		Vgs	±20	V	
Continuous Drain	TA=25°C	l _D	50		
Current G	TA=70°C	ID	50	A	
Pulsed Drain Current C		lдм	150		
Avalanche Current C		IAR	30	A	
Avalanche energy L=0.1mH C		Ear	135	mJ	
Power Dissipation B	TA=25°C	DD	50	W 7	
	TA=100°C	PD	25	W	
Power Dissipation A	TA=25°C	Posm	3	W	
	TA=70°C	PDSM	2.1		
Junction and Storage Temperature Range		Тл, Тѕтс	-55 to 175	°C	

Thermal Characteristics

Parameter		Symbol	Тур	Max	Units	
Maximum	t ≤ 10s		15	20	°C/W	
Junction-to-Ambient A	t // 108	R e JA	13	20	C/ W	
Maximum	Standy State		41	50	°C/W	
Junction-to-Ambient A	Steady-State				C/ W	
Maximum Junction-to-Case в	Steady-State	R в JC	2.1	3	°C/W	


Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
	STATIC PARAMETERS		Conditions		J F	1	
BVDSS	Drain-Source Breakdown Voltage	ID=250uA, VGS=0V		30			V
IDSS	ZeroGate Voltage Drain Current	VDS=20V, VGS=0V	TJ=55°C			5	μΑ
IGSS	Gate-Body leakage current	VDS=0V, VGS=±20V				100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID=250μA		1	1.4	2.5	V
ID(ON)	On state drain current	VGS=10V, VDS=5V		150			A
	Static Drain-Source	VGS=10V, ID=30A			5	6	0
RDS(ON)	On-Resistance		TJ=125°C		7.5		m Ω
	OII-RESISTANCE	VGS=4.5V	V, ID=20A		7.6	9.5	mΩ
gFS	Forward Transconductance	VDS=5V, ID=10A			49		S
VSD	Diode Forward Voltage	IS=1A, VGS=0V			0.74	1	V
IS	Maximum Body-Da	Maximum Body-Diode Continuous Current				50	A
DYNAMIC PA	ARAMETERS			'		•	1
Ciss	Input Capacitance				2050	240	pF
Coss	Output Capacitance	VGS=0V, V	/DS=12.5V,		485		pF
Crss	Reverse Transfer Capacitance	f=1MHz			280		pF
Rg	Gate resistance	VGS=0V, VDS=0V, f=1MHz			0.86	1.5	Ω
SWITCHING	PARAMETERS						
Qg(10V)	Total Gate Charge				34	41	nC
Qg(4.5V)	Total Gate Charge	VGS=10V,	VDS=12.5V,		17	22	
Qgs	Gate Source Charge	ID=20A			5		nC
Qgd	Gate Drain Charge				3.5		nC
tD(on)	Turn-On DelayTime	VGS=10V, VDS=12.5V, RL=0.6Ω,RGEN=3Ω			7.5		ns
tr	Turn-On Rise Time				11		ns
tD(off)	Turn-Off DelayTime				27		ns
tf	Turn-Off Fall Time				8		ns
trr	Body Diode Reverse Recovery Time	IF=20A, dI/dt=100A/μs			30	36	ns
Qrr	Body Diode Reverse Recovery Charge	IF=20A, dI/dt=100A/μs			19		nC

- A. The value of R θ JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25° C. The Power dissipation PDSM is based on R θ JA and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.
- B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175° C.
- D. The R θ JA is the sum of the thermal impedence from junction to case R θ JC and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using $\langle 300 \; \mu \, \text{s} \; \text{pulses}, \; \text{duty cycle} \; 0.5\% \; \text{max}.$
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $TJ(MAX)=175^{\circ}$ C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25° C. The SOA curve provides a single pulse rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Product dimension(PDFN5X6)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

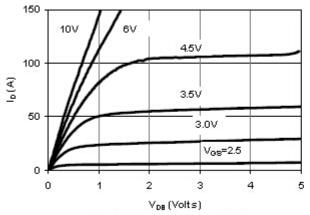


Fig 1: On-Region Characteristics

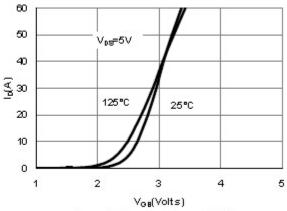


Figure 2: Transfer Characteristics

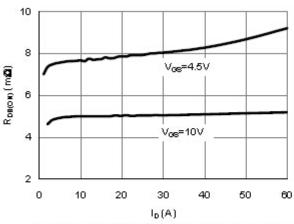


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

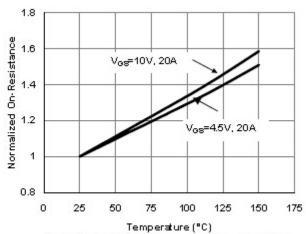


Figure 4: On-Resistance vs. Junction Temperature

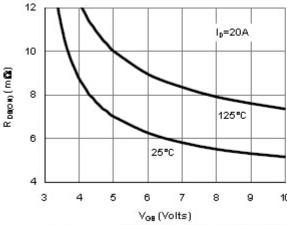


Figure 5: On-Resistance vs. Gate-Source Voltage

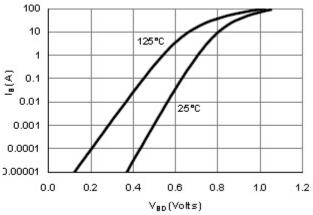


Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

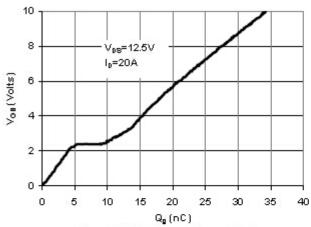


Figure 7: Gate-Charge Characteristics

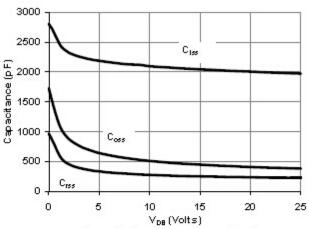


Figure 8: Capacitance Characteristics

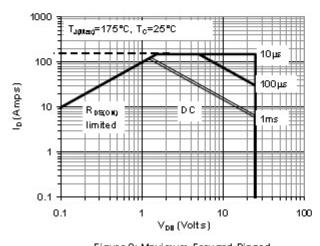


Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

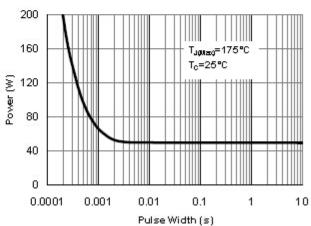


Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

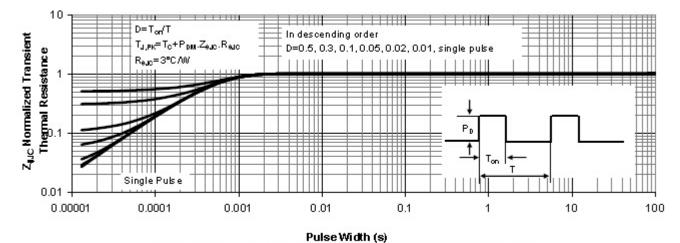


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

. -

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

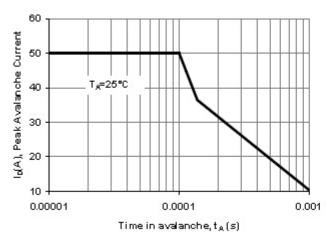


Figure 12: Single Pulse Avalanche capability

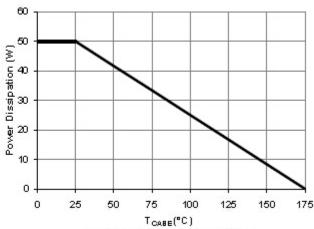


Figure 13: Power De-rating (Note B)

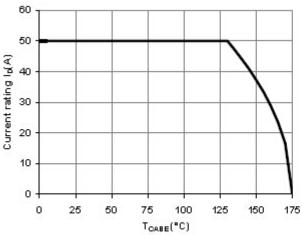


Figure 14: Current De-rating (Note B)

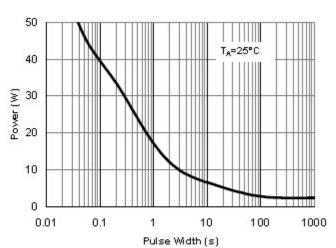


Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

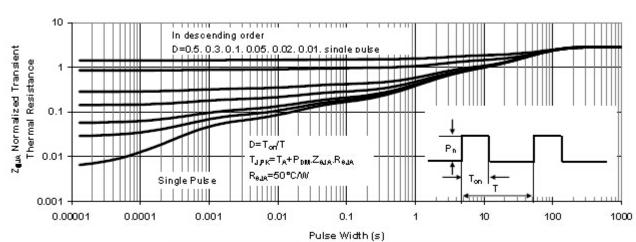


Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

IMPORTANT NOTICE

Sunsigns assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values(such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Sunsigns products described or contained herein. Sunsigns products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.