# **Converter Topologies in Telecom and Server Power**

Sober Hu

# Agenda

- Technical Features
- PFC Stage
  - Lossless Snubber PFC
  - ZVT PFC
  - Interleaving PFC
  - Bridgeless PFC
- DC/DC Stage
  - ZVS PS-FB
  - Resonant Converters
  - Buck Pre-Regulated Open Loop Resonant Converters
  - 2-FETs Forward
  - Active-Clamped Forward

# **Technical Features**

Data Centre and Server System Example ---- Emerson DS Series Server Power Example ---- Eltek Flatpak2 Telecom Rectifier Power Supply Driving Trend of Power Density and Efficiency

### **Data Center and Server System**





NeoBuzz Data Center

Server Farm

Power consumption in data centers increased drastically, and new data centers with tens of thousands of servers consume mega, even tens of mega watts power.

### **Telecom and Server Power**





### **Example --- Emerson DS Series Server Power**

- Input AC: 90 264V 50/60Hz
- Output Power: 2000W
- Outputs: 12V /164.2A max, 3V3SB/9A
- EMI: EN55022 CLASS B
- Cooling: 2 x 40mm Internal fans
- Full digital control implementation
- Dimension: 295.7\*106.7\*40 (11.000" x 4.200" x 1.570" )
- Power density: 26.14W/cu. Inch.
- Efficiency: 93% nominal input voltage
- http://www.powerconversion.com/products/websheet/
   314/DS1800-2000





#### **Example --- Eltek Flatpak2 Telecom Rectifier**

- 1U high, narrow width
- 2000W, 185Vac to 275Vac

Derated down to 85Vac

- -40C to +75C operating
- Internal fans
- Front to back air flow
- Dimension: 327\*109\*41.5 (13.000" x 4.250" x 1.690" )
- Power density: 21.42W/cu. Inch
- 96.5% efficiency "typical"
- http://www.eltekvalere.com/wip4/detail.epl?cat=14742





Flatpack2 HE Rectifier Module 48/2000 **Power Supply Driving** 

What customers care about?

Higher Efficiency! Higher Density! Lower Cost!

### **Trend of Power Density and Efficiency**



Trend of power density and efficiency

# **PFC Stage**

Hard-Switching with Silicon Carbide Diode Lossless Snubber PFC ZVT PFC Bridgeless PFC Interleaving PFC Some Ideas in PFC Controller

## Hard-Switching with Silicon Carbide Diode

![](_page_10_Figure_1.jpeg)

Nearly zero Trr, high efficiency

# Hard-Switching with Silicon Carbide Diode

#### Field Failure Phenomenon:

• SiC diode can achieve high efficiencies at higher operating frequencies to improve the power density.

• Field failures are seen with the applications after 6 months and the root cause is related to silicon structure.

• Silicon vendor, Cree, focuses SiC material on LED lighting application.

# Hard-Switching with Silicon Carbide Diode

### **Design Notes:**

• Be never over the current rating under all practical operating conditions.

• AC input is lost for 20mSec and then it recovers at 90° phase at 275Vac. In this condition, boost choke is subjected to high voltage and high duty cycle at the same time. A strong possibility of saturation and high peak currents in diode, even at light loads.

• Be never over the voltage rating, especially at the high ambient temperature condition.

### **Lossless Snubber PFC**

![](_page_13_Figure_1.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_15_Picture_0.jpeg)

#### Efficiency Curves in CCM

![](_page_15_Figure_2.jpeg)

1800W, 200KHz: Effi = 97.9 @ 230Vac

TI business opportunities?! UC3855...

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

- Rockwell patent, 1983, US # 4,412,277
- Don't need input rectification bridge
- Extremely efficiency, same control signals
- Evenly thermal distribution
- ucc28019, 28060/ucc28070 opportunities
- But severe CM EMI would require complex screening and filtering. and complex filter impact the efficiency?

### **Operation principle**

![](_page_17_Figure_2.jpeg)

Performance comparison

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

### **Design Challenges**

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

![](_page_19_Figure_5.jpeg)

![](_page_19_Figure_6.jpeg)

### **Design Challenges**

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

#### **Current sensing**

![](_page_20_Figure_5.jpeg)

The advanced current synthesizer current sensing same in **ucc28070** can be used in the control IC, some CTs will be removed.

Current

#### **Design Challenges**

Ucc28019, ucc28051 improved?

![](_page_21_Figure_3.jpeg)

CM EMI

### **Design Challenges**

![](_page_22_Figure_2.jpeg)

CM noise is mainly caused by high dv/dt on parasitic capacitor to ground.

Cd1 and Cd2 have typical value between 20pF to 50pF. And typical value of Cp and Cn is around 400pF to 500pF.

In conventional single boost PFC, the output bus is always connected to the input power line through the conducting diode of input bridge. The only parasitic capacitor contributing to CM noise is the MOSFET drain to ground capacitor.

In bridgeless PFC, the voltage potential of output bus is pulsating at the amplitude of half output voltage.

Cp and Cn will lead to high common mode noise. Cb equals that Cp is paralleled with Cn.

# CM EMI

![](_page_23_Figure_2.jpeg)

As the dv/dt of the parasitic capacitors between output bus to earth ground, Vp and Vn, are the same, there is no way to achieve noise cancellation.

![](_page_24_Picture_1.jpeg)

#### Existing solutions to improve CM EMI

![](_page_24_Figure_3.jpeg)

From CPES

From Tyco

The later solution realizes voltage potential stabilization by disabling one of the inductors.

To keep the same current ripple, the boost inductor size is twice as is needed in a single boost PFC.

本

D1

L1

L2

**Š**1

Cc

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

#### From CPES (Balance technique)

![](_page_25_Figure_4.jpeg)

ground

![](_page_25_Picture_5.jpeg)

#### Model (positive sub-period)

D1 H

С

<del>К <sup>D3</sup></del>

![](_page_25_Figure_7.jpeg)

CM EMI

Cd1

Symmetric technology

Model (positive sub-period)

### **Current Sharing**

![](_page_26_Figure_2.jpeg)

Current sharing in two channel interleaving Boost PFC circuit

Idea of current sharing improvement in ucc28060

![](_page_27_Figure_2.jpeg)

Hybrid current sharing control, try it late!

### **Magnetic Integration**

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

#### Reduce reverse recovery loss from CPES

![](_page_28_Figure_5.jpeg)

### **CM EMI**

![](_page_29_Figure_2.jpeg)

**Flourier Analysis** 

Interleaving technique can improve the input ripple current, reduce DM EMI. But how about CM EMI?

The parasitic capacitors C1 and C2 shall be placed symmetrically with Gnd in order to reduce CM EMI in odd harmonics.

![](_page_29_Figure_6.jpeg)

## **Some Ideas in PFC Controller**

- Bulk Voltage Change with Different Input voltages
  - Reduced MOSFET switching losses for dc/dc followed and Boost PFC
- Switching Frequency Change with Different Loads
  - Reduced MOSFET switching losses for Boost PFC
  - Reduced bias power consumption of PFC drivers
- Power Saving in Interleaving Operation at light load
  - Focus on ucc28060/ucc28070
  - Disable one channel operation at light load

# **DC/DC Stage**

ZVS PWM Full-Bridge ZVS Phase-Shifted Full-Bridge LLC Series-Resonant Converter Buck Pre-Regulated Open Loop Resonant Converter 2-FETs Forward Active-Clamped Forward

## **ZVS PWM Full-Bridge**

Pulse Width Modulation Control (PWM) - Duty cycle is controlled by

modulating the pulse width Intersil: ISL6551, ISL6752

![](_page_32_Figure_3.jpeg)

Secondary rectifiers are subjected to spike due to parasitic ringing at the node of primary winding and resonant inductance.

The traditional diode clamp circuit like R. Redl's clamp which are meant for Phase-Shifted Type of control, results in a current imbalance in the main power transformer in PWM control.

## **ZVS PWM Full-Bridge**

• The voltage on resonant inductor shows that there is a volt-second imbalance.

![](_page_33_Figure_3.jpeg)

**Phase Shift Control** - Duty cycle is controlled by phase shifting TI: UCC3895, UC3879, UC3875

![](_page_34_Figure_2.jpeg)

![](_page_35_Figure_0.jpeg)

#### Achieve ZVS in Lag-Legs with ucc3895

The lead-legs can get to ZVS easily.

But for lag-legs, it is very difficult, specially at light load condition.

Some approaches

#### 1. Larger magnetizing current

The operation of a full-bridge, zero-voltage-switched pwm converter, VPEC Seminar, 1989

2. Larger resonant inductance

$$\frac{1}{2} \cdot L_r \cdot I_2^2 > \frac{1}{2} \cdot C_{oss} \cdot V_{in}^2 + \frac{1}{2} \cdot C_{oss} \cdot V_{in}^2 + \frac{1}{2} \cdot C_{TXp} \cdot V_{in}^2$$

![](_page_37_Figure_1.jpeg)

An improved zero-voltage-switched PWM converter using a saturable inductor, PESC 1991

a. Adding the saturable inductance at the primary

3. Improved topology

![](_page_38_Figure_2.jpeg)

**b.** Utilizing the output filtering inductance

#### 3. Improved topology

![](_page_39_Figure_2.jpeg)

Analysis and design considerations of a load and line independent zero voltage switching full bridge DC-DC converter topology, IEEE PE 2002, with 97% efficiency

#### c. Auxiliary network

#### **Practical Design Notes**

- A series cap can't be added on the transformer primary due to voltage runaway in current mode operation.

- The extra drain capacitors must be returned directly to the source pole in the MOSFETs.

- If the CT located in total input path, the magnetic reset circuit must be used due to single quadrant operation. The CT must be outside any loop.

- Possible failure mode at light load: shoot through & Cdv/dt, at Heavy load: Trr of body diode

#### **Limitations of Application**

- The secondary switch voltage rating will be less than optimum for lower output voltage setting.

- For a given current, with transformer ratio fixed, the losses will remain same irrespective of the output voltage setting due to circulation current. This results in significant reduction in efficiency at lower output voltage.

- Poor transformer utilization at lower voltage setting
- Body diode conduction losses for primary MOSFETs.

- Achieving ZVS for the entire load range becomes worse at lower output voltage setting due to narrow due to narrow duty cycle.

- Light load losses and primary MOSFET's body diode speed are primary concern at higher switching frequency.

#### Some Ideas in ZVS PS-FB

- Switching Frequency Reduction at Light Load
  - Reduced MOSFET switching losses
  - Reduced bias power consumption of drivers

![](_page_42_Figure_5.jpeg)

#### Some Ideas in ZVS PS-FB

#### Frequency Jittering

Improve EMI

. Reduce the average readings specially below 1MHz

. Reduce the peak, quasi-peak beyond 10MHz

![](_page_43_Figure_6.jpeg)

$$f_{clk} = 2 x fsw_{nom} = 1 / \{ [ (5V/16) x Ct / I_{rt}] + 120ns \}$$

$$fsw_{nom} \alpha I_{RT}$$

$$\Delta F = fsw_{high} - fsw_{low} = fsw_{nom} x \Delta i / I_{RT}$$

$$fsw_{high} = fsw_{nom} x [ 1 + (\Delta i / 2)x(1/I_{RT}) ] = fsw_{nom} + \Delta F/2$$

$$fsw_{low} = fsw_{nom} x [ 1 - (\Delta i / 2)x(1/I_{RT}) ] = fsw_{nom} - \Delta F/2$$

#### Some Ideas in ZVS PS-FB

Synchronous Rectification

![](_page_44_Figure_3.jpeg)

![](_page_44_Figure_4.jpeg)

New circuit

![](_page_45_Figure_1.jpeg)

- > ZVS can be achieved by utilizing transformer magnetizing inductor
- Capacitor filter, low voltage stress on rectifiers
- Smaller switching loss due to small turn off current
- Wide operation range without reducing normal operation efficiency
- High operating frequency leads to high power density
- Improve the hold-up time
- > Near ZCS for output rectifiers, less reverse recovery loss.

![](_page_46_Figure_1.jpeg)

#### **Design Example**

| Po=1kW | Vin=260V | Vo=54.5V | fsw=200KHz |
|--------|----------|----------|------------|
| Q=0.1  | Lm=136uH | Lr=1.1uH | fr=234KHz  |

| MOSFET          | Cr    | TX(Including Lm and Lr)                          | Rectifier | Со                                  |
|-----------------|-------|--------------------------------------------------|-----------|-------------------------------------|
| STW26NM6<br>0*2 | 420nF | EE42/21/15<br>Lr is the leakage<br>inductance TX | MUR2020*4 | 5mF(Single<br>channel<br>operation) |

- > Operation efficiency: 96.5%
- ZVS has been achieved
- Vcr is closed to 160V

#### **Design Example**

![](_page_48_Figure_2.jpeg)

Soft switching is achieved at full load low to 25% full load

#### **Observations:**

- Operates best with fixed buck voltage or narrow range dynamic.
- Narrow regulation range
- High standby loss

#### **Possibilities and variations:**

- Burst mode at light load

![](_page_49_Figure_7.jpeg)

![](_page_49_Figure_8.jpeg)

#### **Design Notes**

- fs a little lower than fr, main primary MOSFETs ZVS and near ZCS switching-off, secondary rectifiers ZCS, no Irr
- fs too low, bigger primary resonant peak current, effective duty cycle reduction, not good sine wave
- Lm/Lr: 3~5. If Lm/Lr too high, easily enter into ZCS region at heavy load. It will also result in wider operation frequency range.

#### **Design Challenges**

- Design is a iterative process.
- How to achieve resonant tank optical design
- How to achieve the synchronous rectification
- How to solve short-circuit protection
- How to limit operation frequency not too high at low output voltage or light load
- How to regulate the output voltage at light or no load.
- How to solve voltage gain not monotony at the boundary of region 1 and 2

#### **SR Driving**

![](_page_51_Figure_2.jpeg)

The current on SR has different phase with voltage

#### Sense the Vds on SR

> Turn on SR when body diode of SR conducts current (e.g. Vds < -0.5V); Turn off SR when the current is close to zero (e.g. Vds > -5mV)

- > TI driving IC? TPS28225, and predictive drive ucc27221?
- CM6900G from Champion-Micro

#### **Output Regulation at low Vout or light load**

Output voltage vs. output current

TI's resonant IC with new function?

![](_page_52_Figure_4.jpeg)

> Also improve voltage gain not monotony at the boundary of region 1 and 2

#### **Output Short-Circuit Protection**

If fs=fr, output short-circuit, Zall=0, very big primary current. Change operation frequency or resonant tank parameters

![](_page_53_Figure_3.jpeg)

b. Fast outer-current loop and protection circuit, integrated into new control IC...

a. Cycle by cycle protection by clamping the resonant voltage with Dc1 and Dc2. Actually, the resonant capacitance impedance will be changed during output short-circuit (resonant tank), proposed in Yangbo's dissertation in CPES.

At the same time, it will result in lower input ripple current.

#### **Patent Introduction**

![](_page_54_Figure_2.jpeg)

Delta patent, 2002, US # 6,344,979 B1

#### **Circuit Topology**

![](_page_55_Figure_2.jpeg)

#### Sinusoidal currents

- Better EMI performance
- No voltage spikes on the rectifiers

#### ZCS and ZVS over the full load range

- Low reverse recovery loss in the output rectifiers
- High efficiency both at light load and full load

#### Disadvantages

- High output ripple current

![](_page_55_Figure_11.jpeg)

#### **Circuit Topology**

- Two resonant half bridges 90 degrees out of phase
  - Reduce output ripple current
- Buck pre-regulator regulates the output voltage
  - The resonant half bridges run at 100% duty cycle
  - Fixed switching frequency
- The control strategy is very complex.
   TI business opportunities (controls both of Buck and Resonant with interleaving operation)?

**Efficiency of Open Loop LLC Resonant Converter** 

![](_page_57_Figure_2.jpeg)

**Efficiency of ZVS Buck** 

![](_page_58_Figure_2.jpeg)

![](_page_58_Figure_3.jpeg)

**New Idea** 

![](_page_59_Picture_2.jpeg)

![](_page_59_Picture_3.jpeg)

## **2-FETs Forward**

#### **Interleaving Methods**

#### Ucc28220 new idea For SR!

![](_page_60_Figure_3.jpeg)

Comparison results:

In order to keep the same output ripple current, the inductance in (a) circuit should be twice of that in (b), e.g. L1=L2=2L

The inductance current frequency in (b) circuit is twice of that in (a) circuit.

The voltage stresses of the main switches, clamping diodes, and rectifier diodes in both (a) and (b) circuits are the same.

The voltage stresses of freewheel diodes in (b) circuit is just half of that in (a) circuit.

### **2-FETs Forward**

#### **New Idea of Lossless Snubber**

![](_page_61_Figure_2.jpeg)

# **Active-Clamped Forward**

#### **Saturation Issue at Dynamics**

![](_page_62_Figure_2.jpeg)

Refer to Huang Hong's presentation for other design considerations, "UCC2897\_Design".

#### New SR Driving:

All signals from primary Adaptive driving ucc27221?

CH1: main Vds; CH2: main Vgs; CH3: Vcr

![](_page_62_Figure_7.jpeg)

Step load from 0 to 100%; Load: 2A/us

# **Active-Clamped Forward**

#### **Saturation Issue at Dynamics**

#### **Root Cause:** The saturation is caused by magnetic bias.

Design conflicts: big Cr to reduce spike between main MOSFET, but deteriorate the dynamic performance. Big duty cycle improve dynamics, but possibly cause the magnetic core to be saturated.

D\*Vin=(1-D)\*Vcr.

Without load, Vcr is much low while D is very small operated in DCM. If it is instantly changed to heavy load, D will be very big to get to open loop duty with control circuit.

Due to much big Cr, the charging will be very slowly with much small magnetizing current. The v-t balance in the magnetizing inductance will be deteriorated. It will result the magnetic core can't reset, such that the core will close to be saturated.

#### Solution: 1) add the gap in the core. 2) current mode control

ucc2891/2/3/4/7 advantages compared to LM5025!

Be careful: It will also occur in the drive transformer in active-clamped forward!

# Q & A

### Thank you!

Sober-Hu@ti.com