An9920A 3-Pin Switch-Mode 100mA Average Current LED Lamp Driver

Features

- Constant output average current: 100 mA
- Universal 85-264VAC operation
- Fixed off-time buck converter
- Internal 475 V power MOSFET

Applications

- Decorative lighting
- Low power lighting fixtures

General Description

The An9920A is a pulse width modulated (PWM) high efficiency LED driver control IC. It allows efficient operation of LED strings from voltage sources ranging up to 400VDC. The An9920A includes an internal high voltage switching MOSFET controlled with fixed off-time ($\mathrm{T}_{\text {OFF }}$) of approximately $11.5 \mu \mathrm{~s}$ and average logic. The LED string is driven at constant average current, very weakly depending on the inductance value and LED quantity at wide range, thus providing constant light output and enhanced reliability. The output average current is internally fixed at 100 mA . The average current control scheme provides good regulation of the output current throughout the universal AC line voltage range of 85 to 264 VAC or DC input voltage of 20 to 400 V and is inherently protected from input undervoltage condition.

Typical Application Circuit

Absolute Maximum Ratings

Parameter	Value
Supply voltage， V_{DD}	-0.3 to +10 V
Supply current， I_{DD}	+5 mA
Operating ambient temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating junction temperature range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation＠ $25^{\circ} \mathrm{C}$, SOT－89	1600 mW （Mounted on
	FR4 board， 25 mm x $25 \mathrm{~mm} \times 1.57 \mathrm{~mm})$

Stresses beyond those listed under＇Absolute Maximum Ratings＇’ may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．
Note 1：Also limited by package power dissipation limit，whichever is lower．

Pin Configurations

Top View

Electrical Characteristics

（Specifications are at $T_{A}=25^{\circ} \mathrm{C}$ and $V_{\text {DRAIN }}=50 \mathrm{~V}$ ，unless otherwise noted）

\section*{| Symbol | Description | Min． | Typ． | Max． | Units | Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Regulator（ V_{DD} ）

V_{DD}	V_{DD} regulator output	-	7.8	-	V	---
$\mathrm{V}_{\text {DRAIN }}$	$\mathrm{V}_{\text {DRAIN }}$ supply voltage	20	-	-	V	---
$\mathrm{V}_{\text {UVLO }}$	V_{DD} undervoltage threshold	5.0	-	-	V	---
$\Delta \mathrm{V}_{\text {UVLO }}$	V_{DD} undervoltage lockout hysteresis	-	200	-	mV	---
I_{DD}	Operating supply current	-	220	400	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{DD}(\mathrm{EXT})}=8.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DRAIN}}=40 \mathrm{~V}$

Output（DRAIN）

V_{BR}	Breakdown voltage＊	475	-	-	V	---
R_{ON}	On－resistance	-	-	100	Ω	$\mathrm{I}_{\mathrm{DRAIN}}=100 \mathrm{~mA}$
$\mathrm{C}_{\mathrm{DRAIN}}$	Output capacitance \＃	-	1.0	5.0	pF	$\mathrm{V}_{\mathrm{DRAIN}}=400 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SAT}}$	MOSFET saturation current \＃	150	210	-	mA	---

Current Sense Comparator

$\mathrm{I}_{\mathrm{TH}}\left(\mathrm{I}_{\mathrm{O}}\right)$	Threshold average current $*$	90	100	110	mA	$\mathrm{V}_{\mathrm{IN}}=150 \mathrm{~V}, \mathrm{~L} 1=33 \mathrm{mH}, \mathrm{Vo}=60 \mathrm{~V}$, $\mathrm{D} 1-\mathrm{MUR} 160, \mathrm{C}_{\mathrm{IN}}=10 \mathrm{uF}, \mathrm{C}_{\mathrm{DD}}=0.1 \mathrm{uF}$
$\mathrm{T}_{\mathrm{BLANK}}$	Leading edge blanking delay $* \#$	200	300	400	ns	---
$\mathrm{T}_{\mathrm{ON}(\mathrm{MIN})}$	Minimum on－time	-	-	1600	ns	---

OFF－Time Generator

$\mathrm{T}_{\mathrm{OFF}}$		8	11.5	15	$\mu \mathrm{~s}$	---

Note：

＊－Denotes the specifications which apply over the full operating ambient temperature range
of $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ ．
\＃－Denotes guaranteed by design．

Functional Description

Input Voltage Regulator

The An9920A is a PWM average current controller for controlling a buck converter topology in continuous conduction mode（CCM）．The output current is internally preset at 100 mA ．

When the input voltage of 20 to 400 V appears at the DRAIN pin，the internal high－voltage linear regulator seeks to maintain a constant voltage 7.8 VDC at the V_{DD} pin．Until this voltage exceeds the internally programmed under－voltage threshold，the output switching MOSFET is non－conductive．When the threshold is exceeded，the MOSFET turns on．The input current begins to flow into the DRAIN pin． Hysteresis is provided in the under－voltage comparator to prevent oscillation．

When the input current exceeds the internal preset average level，a current sense comparator resets a first RS flip－flop，signifying that a first T_{ON} period is over，and T_{ON} Delay Scheme turns on，starting another the same $\mathrm{T}_{\text {ON }}$ period．At the end of this T_{ON} period a second RS flip－flop resets，and the MOSFET turns off．At the same time，a one－shot circuit is activated that determines the duration of the off－state（ $11.5 \mu \mathrm{~s}$ typ．）．As soon as this time is over，the both flip－flops sets again．The new switching cycle begins．
A＂blanking＂delay of 300 ns is provided that prevent false triggering of the current sense comparator due to the leading edge spike caused by circuit parasitics．

Application Information

The An9920A is a low－cost off－line buck converter IC specifically designed for driving multi－LED strings．It can be operated from either universal AC line range of 85 to 264 VAC ，or 20 to 400 VDC ，and drives up to tens of high brightness LEDs．All LED＇s can be run in series，and the An9920A regulates at constant current，yielding uniform illumination．The An9920A is compatible with triac dimmers．The output current is internally fixed at $\mathrm{I}_{\mathrm{TH}}=100 \mathrm{~mA}$ ．This part is available in space saving TO－92 and SOT－89 package．

Selecting L1 and D1

There is a certain trade－off to be considered between optimal sizing of the output inductor L1 and the tolerated output current ripple．The required value of

L 1 is inversely proportional to the ripple current $\Delta \mathrm{I}_{\mathrm{O}}$ in it．
$\mathbf{L} 1=\left(\mathbf{V}_{\mathbf{O}} \cdot \mathbf{T}_{\mathbf{O F F}}\right) / \Delta \mathbf{I}_{\mathbf{O}}$
where V_{O} is the forward voltage of the LED string． $\mathrm{T}_{\text {OFF }}$ is the off－time of the An9920A．The output current in the LED string $\left(\mathrm{I}_{\mathrm{O}}\right)$ is calculated then as：
$\mathbf{I}_{\mathbf{O}}=\mathbf{I}_{\text {TH }}$
（instead of the expression：$I_{O}=I_{T H}-\Delta I_{O} / 2$ for An9922）
where I_{TH} is the current sense comparator threshold． Thus，at present，the ripple current is not introduces a peak－to－average error in the output current setting that no needs to be accounted for．Due to average logic，the output current is independent on the L1 and V_{O} values at the wide range．The ripple current is varied only．Due to the constant off－time control technique used in the An9920A，the ripple current is independent of the input AC or DC line voltage variation．Therefore，the output average current will remain unaffected by the varying input voltage，the inductance value and the LED quantity．
Adding a filter capacitor across the LED string can reduce the output current ripple even further，thus permitting a reduce value of L1．

Another important aspect of designing an LED driver with the An 9920 A is related to certain parasitic elements of the circuit，including distributed coil capacitance of L1，junction capacitance and reverse recovery of the rectifier diode D 1 ，capacitance of the printed circuit board traces $\mathrm{C}_{\text {PCB }}$ and output capacitance $\mathrm{C}_{\text {DRAIN }}$ of the controller itself．These parasitic elements affect the efficiency of the switching converter and could potentially cause false triggering of the current sense comparator if not properly managed．Minimizing these parasitics is essential for efficient and reliable operation of the An9920A．

Coil capacitance of inductors is typically provided in the manufacture＇s data books either directly or in terms of the self－resonant frequency（SRF）．
$\mathbf{S R F}=\mathbf{1} /\left(\mathbf{2} \boldsymbol{\pi} \cdot \sqrt{ }\left(\mathbf{L} \cdot \mathbf{C}_{\mathbf{L}}\right)\right)$
where L is the inductance value，and C_{L} is the coil capacitance．Charging and discharging this capacitance every switching cycle causes high－ current spikes in the LED string．Therefore， connecting a small capacitor $\mathrm{C}_{\mathrm{O}}(\sim 10 \mathrm{nF})$ is recommended to bypass these spikes．

Using an ultra－fast rectifier diode for D1 is recommended to achieve high efficiency and reduce the risk of false triggering of the current sense comparator．Using diodes with shorter reverse recovery time t_{rr} and lower junction capacitance C_{J} achieves better performance．The reverse voltage rating V_{R} of the diode must be greater than the maximum input voltage of the LED lamp．
The total parasitic capacitance present at the DRAIN pin of the An9920A can be calculated as：
$\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\text {DRAIN }}+\mathrm{C}_{\mathrm{PCB}}+\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{J}}$
When the switching MOSFET turns on，the capacitance C_{P} is discharged into the DRAIN pin of the IC．The discharge current is limited to about 210 mA typically．However，it may become lower at increased junction temperature．The duration of the leading edge current spike can be estimated as：

$$
\begin{equation*}
\mathbf{T}_{\text {SPIKE }}=\left[\left(\mathbf{V}_{\mathbf{I N}} \cdot \mathbf{C}_{\mathbf{P}}\right) /\left(\mathbf{I}_{\mathbf{S A T}}\right)\right]+\mathrm{t}_{\mathrm{rr}} \tag{4}
\end{equation*}
$$

In order to avoid false triggering of the current sense comparator， C_{P} must be minimized in accordance with the following expression：
$\mathbf{C}_{\mathbf{P}}<\mathrm{I}_{\text {SAT }} \cdot\left(\mathbf{T}_{\text {BLANK（MIN）}}-\mathrm{t}_{\mathrm{TI}}\right) / \mathbf{V}_{\text {IN（MAX）}}$
where $\mathrm{T}_{\text {BLANK（MIN）}}$ is the minimum blanking time of 200ns，and $\mathrm{V}_{\text {IN（MAX })}$ is the maximum instantaneous input voltage．

Estimating Power Loss

Discharging the parasitic capacitance CP into the DRAIN pin of the An9920A is responsible for the bulk of the switching power loss．It can be estimated using the following equation：
$\mathbf{P}_{\text {SWITCH }}=\left[\left(\mathbf{V}_{\text {IN }}{ }^{2} \cdot \mathbf{C}_{\mathbf{P}} / \mathbf{2}\right)+\mathbf{V}_{\text {IN }} \cdot \mathbf{I}_{\text {SAT }} \cdot \mathrm{t}_{\mathrm{rr}}\right] \cdot \mathbf{F}_{\mathrm{S}}(\mathbf{6})$
where F_{S} is the switching frequency， $\mathrm{I}_{\text {SAT }}$ is the saturated DRAIN current of the An9920A．The switching loss is the greatest at the maximum input voltage．The switching frequency is given by the following：
$\mathbf{F}_{\mathbf{S}}=\left(\mathbf{V}_{\text {IN }}-\eta^{-1} \cdot \mathbf{V}_{\mathbf{O}}\right) / \mathbf{V}_{\mathbf{I N}} \cdot \mathbf{T}_{\mathbf{O F F}}$
where η is the efficiency of the power converter．
When the An9920A LED driver is powered from the full－wave rectified AC input，the switching power loss can be estimated as：
$\mathbf{P}_{\text {SWIYCH }} \approx\left[\mathbf{1} /\left(\mathbf{2} \cdot \mathbf{T}_{\mathbf{O F F}}\right)\right] \cdot\left(\mathbf{V}_{\mathrm{AC}} \cdot \mathbf{C}_{\mathbf{P}}+\mathbf{2} \cdot \mathbf{I}_{\text {SAT }} \cdot \mathrm{t}_{\mathrm{rI}}\right) \cdot$
$\cdot\left(\mathbf{V}_{\mathrm{AC}}-\eta^{-1} \cdot \mathbf{V}_{\mathrm{O}}\right)$
V_{AC} is the input AC line voltage．
The switching power loss associated with turn－off transitions of the DRAIN pin can be disregarded． Due to the large amount of parasitic capacitance connected to this switching node，the turn－off transition occurs essentially at zero－voltage． Conduction power loss in the An9920A can be calculated as：

$$
\begin{equation*}
\mathbf{P}_{\mathrm{COND}}=\left(\mathbf{D} \cdot \mathbf{I}_{\mathbf{O}}{ }^{2} \cdot \mathbf{R}_{\mathrm{ON}}\right)+\left(\mathbf{I}_{\mathrm{DD}} \cdot \mathbf{V}_{\mathrm{IN}} \cdot(\mathbf{1}-\mathbf{D})\right) \tag{9}
\end{equation*}
$$

where $\mathbf{D}=\mathbf{V}_{\mathbf{O}} /\left(\eta \cdot \mathbf{V}_{\text {IN }}\right)$ is the duty ratio， R_{ON} is the on－resistance， I_{DD} is the internal linear regulator current．
When the LED driver is powered from the full－ wave rectified AC line input，the exact equation for calculating the conduction loss is more cumbersome．However，it can be estimated using the following equation：

$$
\begin{equation*}
\mathbf{P}_{\mathrm{COND}}=\left(\mathbf{K}_{\mathrm{C}} \cdot \mathbf{I}_{\mathbf{O}}^{2} \cdot \mathbf{R}_{\mathrm{ON}}\right)+\left(\mathbf{K}_{\mathrm{D}} \cdot \mathbf{I}_{\mathrm{DD}} \cdot \mathbf{V}_{\mathrm{AC}}\right) \tag{10}
\end{equation*}
$$

where V_{AC} is the input AC line voltage．The coefficients K_{C} and K_{D} can be determined from the minimum duty ratio of the An9920A．

Fig．1．Conduction Loss Coefficients K_{C} and K_{D}

EMI Filter

As with all off－line converters，selecting an input filter is critical to obtaining good EMI．A switching side capacitor，albeit of small value，is necessary in order to ensure low impedance to the high frequency switching current of the converter． As a rule of thumb，this capacitor should be approximately $0.1-0.2 \mu \mathrm{~F} / \mathrm{W}$ of LED output power．A recommended input filter is shown in Figure 2 for the following design example．

Design Example

Let us design an An9920A LED lamp driver meeting the following specification：
Input：Universal AC，85－135VAC
Output Current： 100 mA
Load：String of 12 LED（Power TOPLED
OSRAM ${ }^{\circledR} V_{F}=2.5 \mathrm{~V}$ max．each）
Step 1．Calculation L1．
The output voltage $\mathrm{V}_{\mathrm{O}}=12 \times \mathrm{V}_{\mathrm{F}}=30 \mathrm{~V}$（max．）． Use equation（1）assuming a 15% peak－to－peak ripple．
$\mathrm{L} 1=(30 \mathrm{~V} \cdot 11.5 \mu \mathrm{~s}) /(0.15 \cdot 100 \mathrm{~mA})=23 \mathrm{mH}$
Select $\mathrm{L} 1=22 \mathrm{mH}, \mathrm{I}=120 \mathrm{~mA}$ ．Typical SRF $=$ 270 KHz ．Calculate the coil capacitance．
$\mathrm{C}_{\mathrm{L}}=1 /\left[\mathrm{LL} \cdot(2 \pi \cdot \mathrm{SRF})^{2}\right]=1 /[22 \mathrm{mH} \cdot(2 \pi \cdot$ $\left.270 \mathrm{KHz})^{2}\right] \approx 15 \mathrm{pF}$

Step 2．Selecting D1．
Select D1 MUR160 with $\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$ ，trr $\approx 50 \mathrm{~ns}$ and $\mathrm{C}_{\mathrm{J}} \approx 8 \mathrm{pF}\left(\mathrm{V}_{\mathrm{F}}>50 \mathrm{~V}\right)$ ．
Step 3．Calculating total parasitic capacitance using（3）．
$\mathrm{C}_{\mathrm{P}}=5 \mathrm{pF}+5 \mathrm{pF}+15 \mathrm{pF}+8 \mathrm{pF}=33 \mathrm{pF}$

Step 4．Calculating the leading edge spike duration using（4），（5）．
$\mathrm{T}_{\text {SPIKE }}=(135 \mathrm{~V} \cdot \sqrt{ } 2 \cdot 33 \mathrm{pF}) / 150 \mathrm{~mA}+50 \mathrm{~ns} \approx$ $92 \mathrm{~ns}<\mathrm{T}_{\text {BLANK（MIN）}}=200 \mathrm{~ns}$
Step 5．Estimating power dissipation in An9920A at 135 VAC using（8）and（10）．
Let us assume that the overall efficiency $\eta=0.7$ ．

Switching Power Loss

$\mathrm{P}_{\text {SWITCH }}=(135 \mathrm{~V} \cdot 33 \mathrm{pF}+2 \cdot 150 \mathrm{~mA} \cdot 50 \mathrm{~ns}) \cdot$ $(135 \mathrm{~V}-30 \mathrm{~V} / 0.7) /(2 \cdot 11.5 \mu \mathrm{~s}) \approx 80 \mathrm{~mW}$

Minimum Duty Ratio
$\mathrm{D}_{\mathrm{M}}=30 \mathrm{~V} /(0.7 \cdot 135 \mathrm{~V} \cdot \sqrt{ } 2) \approx 0.23$

Conduction Power Loss

$\mathrm{P}_{\mathrm{COND}}=0.32 \cdot(100 \mathrm{~mA})^{2} \cdot 100 \Omega+0.62 \cdot 220 \mu \mathrm{~A}$ ． $135 \mathrm{~V} \approx 340 \mathrm{~mW}$

Total Power Dissipation in An9920A：
$\mathrm{P}_{\text {TOTAL }}=80 \mathrm{~mW}+340 \mathrm{~mW}=420 \mathrm{~mW}$
Step 6．Selecting input capacitor $\mathrm{C}_{\text {IN }}$
Output Power $=30 \mathrm{~V} \cdot 100 \mathrm{~mA}=3 \mathrm{~W}$
Select $\mathrm{C}_{\text {IN }}=0.47 \mu \mathrm{~F}, 250 \mathrm{~V}$

Figure 2．Universal 85－135VAC LED Lamp Driver

Figure 3. Typical Efficiency

Efficiency (\%)

Figure 5. Lead Edge Spike Ch1: V ${ }_{\text {DRAIN }}$, Ch3: $\mathrm{I}_{\text {drain }}$

Functional Block Diagram

Pad Diagram

1．Chip size： $\mathrm{A}=1.26 \mathrm{~mm}, \mathrm{~B}=1.59 \mathrm{~mm}$（without scribe line width）．
2．Scribe line width： $\mathrm{X}=80 \mu \mathrm{~m}, \mathrm{Y}=80 \mu \mathrm{~m}$
3．Pad size：Pad 1： $101 \mu \mathrm{~m} \times 202 \mu \mathrm{~m}$
Pad 2： $125 \mu \mathrm{~m} \times 165 \mu \mathrm{~m}$
Pad 3： $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$ Pad $4 \div \operatorname{Pad} 14: 90 \mu \mathrm{~m} \times 90 \mu \mathrm{~m}$
4．Substrate to GND．
5．Wafer thickness： $460 \mu \mathrm{~m}$

Pad Description and Location

No Pad	Symbol	Description	\mathbf{X} （мкм）	Y （мкм）
1	DRAIN	Switching MOSFET Drain Output and Linear Regulator Input	883	-554
2	GND	Common Connection for all Circuits	712	130
3	V $_{\text {DD }}$	Power Supply Pin for Internal Control Circuit．Bypass this pin with a 0．1 μ F low impedance capacitor	692	638
4	V $_{\text {REF }}$	Reference Voltage Output，Test Pad	0	520
5	GND1	Ground Input for V Test Test Pad	0	390
6	F0	V $_{\text {REF }}$ Trimmiming Least Significant Input，Test Pad	0	260
7	F1	V $_{\text {REF }}$ Trimming Middle Significant Input，Test pad	0	130
8	F2	V $_{\text {REF }}$ Trimming Most Significant Input，Test Pad	0	0
9	S	Switching MOSFET Source Output， Test Pad	983	-21
10	F5	I $_{\text {TH }}$ Trimming Most Significant Input，Test Pad	983	109
11	F4	I $_{\text {TH }}$ Trimming Middle Significant Input，Test Pad	983	239
12	F6	$\mathrm{I}_{\text {TH }}$ Trimming Common Input，Test Pad	983	369
13	F3	$\mathrm{I}_{\text {TH }}$ Trimming Least Significant Input，Test Pad	983	499
14	G	Gate Input，Test Pad	983	629

An9920A Layout Considerations

See Figure 7 for a recommended circuit board layout for the An9920A．

Single Point Grounding

Use a single point ground connection from the input filter capacitor to the area of copper connected to the GND pin．

Bypass Capacitor（ \mathbf{C}_{DD} ）

The $V_{D D}$ pin bypass capacitor $C_{D D}$ should be located as near as possible to the $V_{D D}$ and $G N D$ pins．

Switching Loop Areas

The area of the switching loop connecting the input filter capacitor C_{IN} ，the diode D1 and the An9920A together should be kept as small as possible．
The switching loop area connecting the output filter capacitor C_{O} ，the inductor L 1 and the diode D1 together should be kept as small as possible．

Thermal Considerations vs．Radiated EMI

The cooper area where GND pin is connected acts not only as a single point ground，but also as a heat sink．
This area should be maximized for good heat sinking，especially when An9920A（SOT－89 package），is used．
The same applies to the cathode of the free－wheeling diode D1．Both nodes are quiet and therefore，will not cause radiated RF emission．The switching node copper area connected to the DRAIN pin of the An9920A，the anode of D1 and the inductor L1 needs to be minimized．A large switching node area can increase high frequency radiated EMI．

Input Filter Layout Considerations

The input circuit of the EMI filter must not be placed in the direct proximity to the inductor L1 in order to avoid magnetic coupling of its leakage fields．This consideration is especially important when unshielded construction of L1 is used．When an axial input EMI filter inductor $\mathrm{L}_{\text {IN }}$ is selected，it must be positioned orthogonal with respect to L 1 ．The loop area formed by $\mathrm{C}_{\mathrm{IN} 2}, \mathrm{~L}_{\mathrm{IN}}$ ，and C_{IN} should be minimized．The input lead wires must be twisted together．

Figure7．Recommended circuit board layout with the An9920A（SOT－89 package）

