

QM0032S

N-Ch 100V Fast Switching MOSFETs

General Description

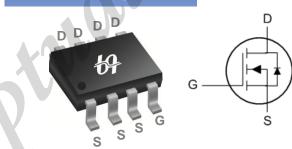
The QM0032S is the highest performance trench N-ch MOSFETs with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The QM0032S meet the RoHS and Green Product requirement , 100% EAS guaranteed with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Green Device Available

Product Summery



BVDSS	RDSON	ID
100V	22mΩ	7 A

Applications

- Secondary Synchronous Rectifier
- LED TV Back Light

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	100	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	7	А	
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	5	А	
I _{DM}	Pulsed Drain Current ²	35	А	
EAS	Single Pulse Avalanche Energy ³	16	mJ	
I _{AS}	Avalanche Current	13	А	
P _D @T _A =25°C	Total Power Dissipation ³	2.5	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient 1 (t \leq 10S)		50	°C/W
	Thermal Resistance Junction-ambient ¹ (Steady State)		85	°C/W

1

N-Ch 100V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS}=0V$, $I_D=250uA$	100			V
$\triangle BV_{DSS} / \triangle T_J$	BVDSS Temperature Coefficient	Reference to 25° C , I _D =1mA		0.089		V/°C
Р	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =7A		18	22	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =5A		24	28	mΩ
V _{GS(th)}	Gate Threshold Voltage	$-V_{GS}=V_{DS}$, $I_D = 250 uA$	1.2		3	V
$ riangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient			-4.66		mV/°C
	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =25°C			1	uA
I _{DSS}		V _{DS} =80V , V _{GS} =0V , T _J =55°C			5	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =7A		22		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.9		Ω
Qg	Total Gate Charge (10V)	V _{DS} =80V , V _{GS} =10V , I _D =7A		31.9		
Q _{gs}	Gate-Source Charge			5.5		nC
Q _{gd}	Gate-Drain Charge			8.8		
T _{d(on)}	Turn-On Delay Time			11.4		
Tr	Rise Time	V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω		27.2		
T _{d(off)}	Turn-Off Delay Time	I _D =7A		34.7		ns
T _f	Fall Time			16.6		
Ciss	Input Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		1848		
C _{oss}	Output Capacitance			276		рF
C _{rss}	Reverse Transfer Capacitance			97.9		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,4}	$V_G = V_D = 0V$, Force Current			7	А
I _{SM}	Pulsed Source Current ^{2,4}				35	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , TJ=25°C			1.2	V
t _{rr}	Reverse Recovery Time	IF=7A,dI/dt=100A/μs,Tյ=25°C		44		nS
Q _{rr}	Reverse Recovery Charge			25		nC

Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH,

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.