t, and copyright announcement at each page with the counterparts of iML, and delete the Notice page. Other contents are not changed., E

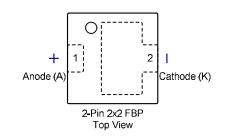
AMC7169

500mA LED PROTECTOR

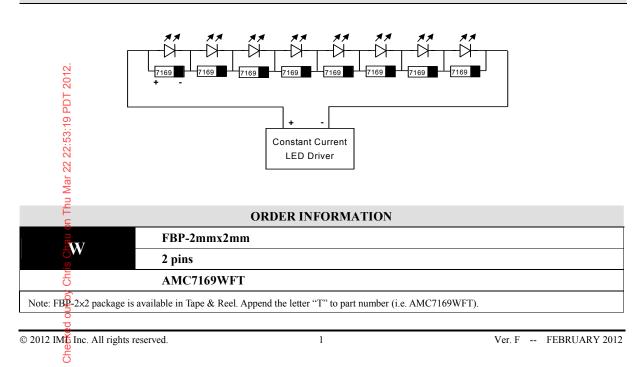
DESCRIPTION

The AMC7169 is a two terminal LED protector with low dropout voltage rated for 500mA bypass current. Low operation current at monitoring mode and high bypass current capability at triggered mode. Build-in reverse diode for bypass reversed supply voltage.

The AMC7169 is designed for parallel connection with power LED. It bypasses LED driving current when LED at open circuit condition. It also bypasses LED driving current at reverse connected driving current to LED.


FEATURES

- **5V Protection Trigger Voltage**
- 500mA Bypass Current Capability
- 1V Bypass Dropout Voltage
- **500mA Reverse Current Capability**
- **8KV HBM ESD Protection**
- 2-Lead 2mm x 2mm FBP Package


APPLICATIONS

- LED Lighting
- LED backlight for LCD TV/ Monitor
- High Power LED Protection

PACKAGE PIN OUT

TYPICAL APPLICATION

t, and copyright announcement at each page with the counterparts of iML, and delete the Notice page. Other contents are not changed., E

AMC7169

ABSOLUTE MAXIMUM RATINGS (Note)				
Input Sustaining Voltage	40V			
Maximum Operating Junction Temperature, T _J	150°C			
Operating Temperature, T _{opr}	-40°C to 85°C			
Storage Temperature Range	-55°C to 150°C			
Lead Temperature (soldering, 10 seconds)	260°C			
Note: Exceeding these ratings could cause damage to the device. All voltages are with res	spect to Ground.			

Currents are positive into, negative out of the specified terminal.

PIN DESCRIPTION						
Pin Number	Pin Name	Pin Function				
1 (+)	Anode (A)	Connected to LED's anode.				
2 (-)	Cathode (K)	Connected to LED's cathode and use this pin to enhance the power dissipation ability.				

THERMAL DATA

Thermal Resistance from Junction to Ambient, θ_{JA}

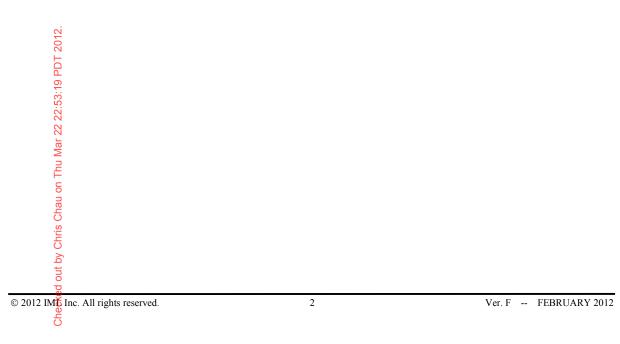
100°C/W

 $\label{eq:constraint} \text{Junction Temperature Calculation:} \quad T_J = T_A + (P_D \times \theta_{JA}) \, .$

The □_{JA} numbers are guidelines for performance of the device/PCB system.

Connect the ground pin to ground using a large pad or ground plane for better heat dissipation. All of the above assume no ambient airflow.

Maximum Power Calculation:


 $P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A(MAX)}}{c}$

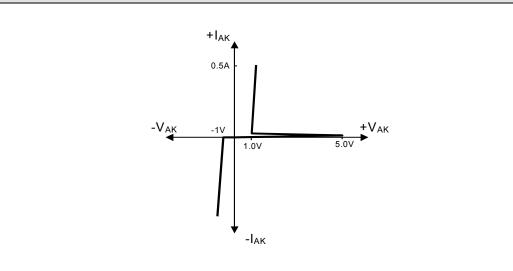
 θ_{JA}

 $T_J({}^{\circ}C){:} \qquad \mbox{Maximum recommended junction temperature}.$

 $T_A(^{\circ}C)$: Ambient temperature of the application.

 θ_{JA} (°C/W): Junction-to-temperature thermal resistance of the package, and other heat dissipating materials.

t, and copyright announcement at each page with the counterparts of iML, and delete the Notice page. Other contents are not changed., E



Operating Junction Temperature

RECOMMENDED OPERATING CONDITIONS								
Parameter	Symbol	Min.	Тур.	Max.	Units			
Bypass Current (with Adequate Heat Sinking)	I _{BP}			500	mA			
Reverse Current	I _R			500	mA			
Operating Ambient Temperature Range	T _A	-40		85	°C			
Operating Ambient Temperature Range		-40		85	°C			

 T_J

I-V CURVE

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_A=25^{\circ}C$, and are for DC characteristics only. (Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)								
Parameter	Symbol	Conditions	Min	Тур	Max	Units		
TriggeeVoltage	V _{TR}		4.65	4.9	5.15	V		
Drop-out Voltage	V _{DO}	I _{AK} =350mA		1	1.35	V		
Reverse Drop-out Voltage	V _{RDO}	$I_R = 350 \text{mA}$		1.1	1.35	V		
Monitoring Current	I _{MAC}	$V_{AK} = 3.5 V$		100	150	uA		
Break-ever Current	I _{BAC}				20	mA		
Trigger Delay Time	t _D	I _{AK} =350mA		100		nS		

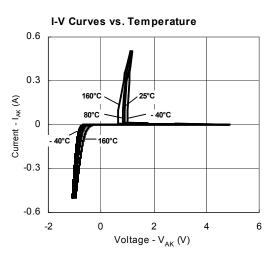
Cycle Char of the Dec Char of

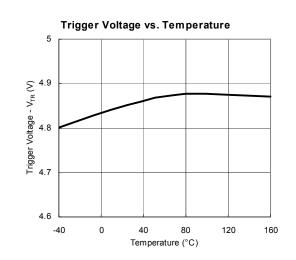
Š

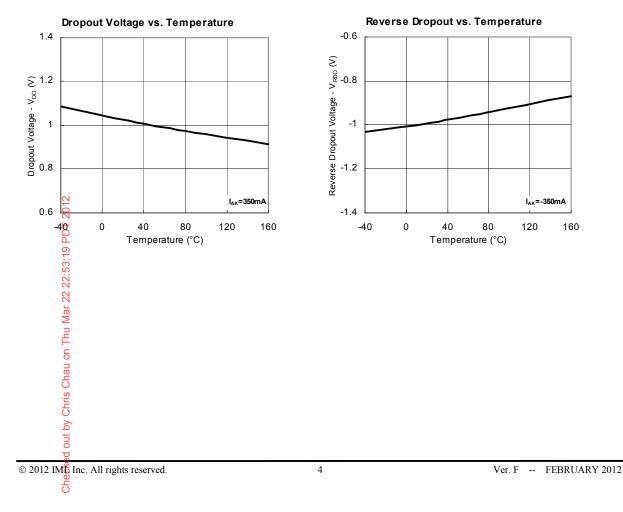
3

AMC7169

125

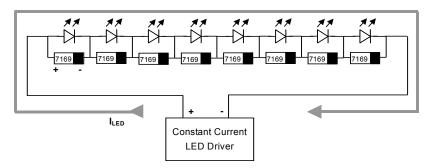

°C


t, and copyright announcement at each page with the counterparts of iML, and delete the Notice page. Other contents are not changed., E



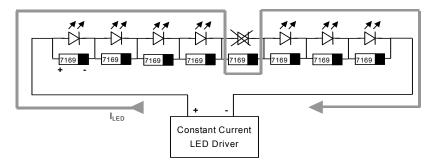
AMC7169

t, and copyright announcement at each page with the counterparts of iML, and delete the Notice page. Other contents are not changed., E

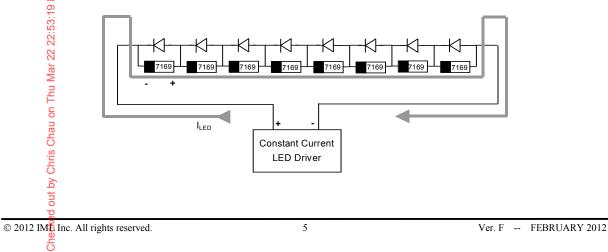


AMC7169

APPLICATION INFORMATION


Monitoring Mode:

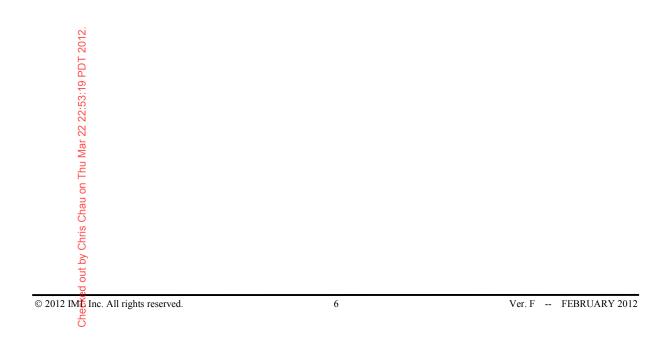
The forward voltage drop (V_F) of all LEDs should be less than 4V, which is lower than AMC7169 trigger voltage 5.0V. All AMC7169 at monitoring mode would only sink ~uA current from the system.


Triggered Mode:

Any LED may become open circuit because of LED damage or wiring problem. When it happens, the voltage drop across adjacent AMC7169 starts to increase, and then AMC7169 will be trigged when the voltage drop reaches 5V. The dropout voltage on AMC7169 will be around 1V and the LED current I_{LED} will be bypassed to next LED. All LEDs will work well except the abnormal LED bypassed.

Reverse Mode:

When the LED string was reversed connected to the driver, the AMC7169 build-in reverse protection diode was turned-off to bypass the current. Such that the reverse voltage on LEDs was reduced to prevent LED damage.



t, and copyright announcement at each page with the counterparts of iML, and delete the Notice page. Other contents are not changed., E

PACKAGE 2x2 FBP A1 NOM. SYMBOLS MIN. MAX. A3 k-0.850 0.900 0.800 А A1 0.000 -0.050 Ο A3 0.203 b 0.550 0.600 0.650 5 4 Ь ٩ ÷ D 1.924 2.000 2.076 ÷ D1 1.580 1.680 1.780 E1 Е 1.924 2.000 2.076 E1 0.820 0.920 1.020 Е L -Α L 1.045 е --0.200 k Top View Side View Bottom View --0.330 L 0.254 0.406 UNIT: MILLIMETERS

