

集成16路触摸按键输入和PWM的增强型8051微控制器

1.特性

- 基于8051指令流水线结构的8位单片机
- Flash ROM: 16K字节
- RAM: 内部256字节,外部1280字节
- 工作电压2.7V 5.5V
- 振荡器:
 - -内部RC振荡器: 27MHz(±2%) -外部晶体振荡器: 32.768KHz
- 28pin: 25个CMOS双向I/O管 20pin: 17CMOS双向I/O管
- I/O内建上拉电阻
- 3个16位定时器/计数器: T2, T3, T4
- 20路触摸按键输入
- 内建触摸按键比较电压(1V, 1.5V, 2V, 2.5V)
- 7COM 16SEG LED 驱动
- 触摸按键与LED 驱动共享

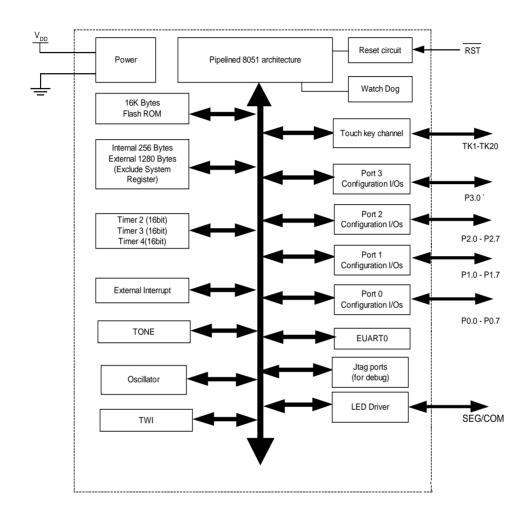
- 中断源:
 - 定时器2, 3, 4
 - 外部中断0, 1, 2, 4
 - EUART
 - -触摸按键
 - -TWI
- 1路增强型自带波特率发生器的UART
- TWI通讯接口
- 内建2通道可编程音频发生器
- CPU机器周期: 1个振荡周期
- 看门狗定时器(WDT)
- Flash型
- 封装: SOP28 SOP20

SOP16

2. 概述

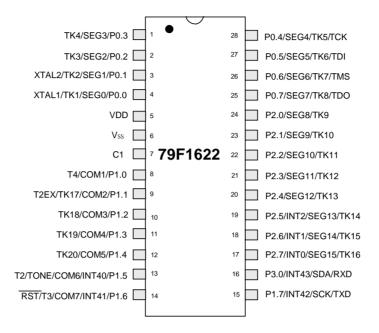
SH79F1622是一种高速高效率8051兼容单片机。在同样振荡频率下,较之传统的8051芯片具有运行更快速,性能更优越的特性。

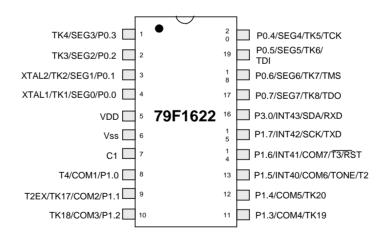
SH79F1622保留了标准8051芯片的大部分特性,包括内置256字节RAM和3个16位定时器/计数器。此外,SH79F1622还集成了1280字节外部扩展RAM,以及存储程序的16K字节Flash块。


SH79F1622还集成双路音频发生模块,低电压复位,TWI通讯功能,以及触摸按键与LED共享功能来节省引脚,非常适合于触摸按键应用控制。

此外,SH79F1622集成了看门狗定时器,EUART等功能。

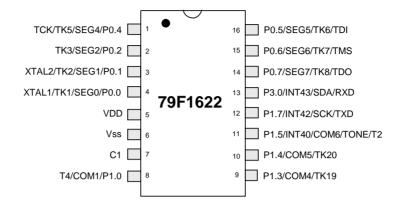
1 V2.0


3. 方框图


4. 引脚配置

28pin SOP封装引脚图

引脚配置图


20pin SOP封装引脚图

引脚配置图

16pin SOP封装 引脚图

注意:

- **1.** SH79F1622为SOP16 pin封装时,不使用的I/O(较20PIN引脚图中少掉的P0.3,P1.1,P1.2,P1.6),需要将其设置成输出低电平,以避免功能冲突。
- 2. 引脚命名中,写在最外侧的引脚功能具有最高优先级,最内侧的引脚功能具有最低优先级(**参见引脚配置图**)。当一个引脚被高优先级的功能占用时,即使低优先级功能被允许,也不能作为低优先级功能的引脚。只有当软件禁止引脚的高优先级功能,相应引脚才能被释放作为低优先级端口使用。

Table 4.1 28pin引脚编号

引脚编号	引脚命名	默认功能	引脚编号	引脚命名	默认功能
1	TK4/SEG3/P0.3	P0.3	15	P1.7/INT42/SCK/TXD	P1.7
2	TK3/SEG2/P0.2	P0.2	16	P3.0/INT43/SDA/RXD	P3.0
3	XTAL2/TK2/SEG1/P0.1	P0.1	17	P2.7/INT0/SEG15/TK16	P2.7
4	XTAL1/TK1/SEG0/P0.0	P0.0	18	P2.6/INT1/SEG14/TK15	P2.6
5	V_{DD}		19	P2.5/INT2/SEG13/TK14	P2.5
6	V_{SS}		20	P2.4/SEG12/TK13	P2.4
7	C1		21	P2.3/SEG11/TK12	P2.3
8	T4/COM1/P1.0	P1.0	22	P2.2/SEG10/TK11	P2.2
9	T2EX/TK17/COM2/P1.1	P1.1	23	P2.1/SEG9/TK10	P2.1
10	TK18/COM3/P1.2	P1.2	24	P2.0/SEG8/TK9	P2.0
11	TK19/COM4/P1.3	P1.3	25	P0.7/SEG7/TK8/TDO	P0.7
12	TK20/COM5/P1.4	P1.4	26	P0.6/SEG6/TK7/TMS	P0.6
13	T2/TONE/COM6/INT40/P1.5	P1.5	27	P0.5/SEG5/TK5/TDI	P0.5
14	RST/T3/COM7/INT41/P1.6	P1.6	28	P0.4/SEG4/TK5/TCK	P0.4

Table 4.2 20pin引脚编号

引脚编号	引脚命名	默认功能	引脚编号	引脚命名	默认功能	
1	TK4/SEG3/P0.3	P0.3	11	P1.3/COM4/TK19	P1.3	
2	TK3/SEG2/P0.2	P0.2	12	P1.4		
3	XTAL2/TK2/SEG1/P0.1	P0.1	0.1 13 P1.5/INT40/COM6/TONE/T2			
4	XTAL1/TK2/SEG0/P0.0	P0.0	14	P1.6/INT41/COM7/T3/RST	P1.6	
5	V_{DD}		15	P1.7/INT42/SCK/TXD	P1.7	
6	V_{SS}		16	P3.0/INT43/SDA/RXD	P3.0	
7	C1		17	P0.7/SEG7/TK8/TDO	P0.7	
8	T4/COM1/P1.0	P1.0	18	P0.6/SEG6/TK7/TMS	P0.6	
9	T2EX/TK17/COM2/P1.1	P1.1	19	P0.5/SEG5/TK6/TDI	P0.5	
10	TK18/COM3/P1.2	P1.2	20	P0.4/SEG4/TK5/TCK	P0.4	

Table 4.3 16pin引脚编号

引脚编号	引脚命名	默认功能	引脚编号	引脚命名	默认功能
1	TCK/TK5/SEG4/P0.4	P0.4	9	TK19/COM4/ P1.3	P1.3
2	TK3/SEG2/P0.2	P0.2	0.2 10 TK20/COM5/P1.4		
3	XTAL2/TK2/SEG1/P0.1	P0.1	P0.1 11 T2/TONE/COM6/INT40/P1		
4	XTAL1/TK2/SEG0/P0.0	P0.0	12	TXD/SCK/INT42/P1.7	P1.7
5	V_{DD}		13	RXD/SDA/INT43/P3.0	P3.0
6	V _{SS}		14	TDO/TK8/SEG7/P0.7	P0.7
7	C1		15	TMS/TK7/SEG6/P0.6	P0.6
8	T4/COM1/P1.0	P1.0	16	TDI/TK5/SEG5/P0.5	P0.5

注意: SH79F1622为SOP16 pin封装时,不使用的I/O(较20PIN引脚图中少掉的P0.3,P1.1,P1.2,P1.6),需要将其设置成输出低电平,以避免功能冲突。

5. 引脚描述

引脚命名	类型	说明
I/O端口	•	
P0.0 - P0.7	I/O	8位双向I/O端口
P1.0 - P1.7	I/O	8位双向I/O端口
P2.0 - P2.7	I/O	8位双向I/O端口
P3.0	I/O	双向I/O端口
触摸按键功能		
TK1-TK20	I	触摸按键引脚
C1	I	触摸按键外接电容引脚
定时器	•	
T2	I/O	定时器2外部输入/波特率时钟输出
T3	I	定时器3外部输入
T4	I	定时器4外部输入
T2EX	I	定时器2重载/捕捉/方向控制
双路音频发生器	•	
TONE	0	音频输出脚
LED驱动器		
SEG1-SEG16	0	LED显示SEG引脚输出信号
COM1-COM7	0	LED显示COM引脚输出信号
EUART	•	
RXD	I	EUART0数据输入引脚
TXD	0	EUART0数据输出引脚
TWI	•	
SDA	I/O	TWI数据输入/输出引脚
SCK	I/O	TWI时钟引脚
中断&复位&时钟&电源	•	
INT0 - INT2, INT4	I	外部中断0-2,4
RST	I	该引脚上保持10μs以上的低电平,CPU将复位。由于有内建30kΩ上拉电阻连接到V _{DD} , 所以仅接一个外部电容即可实现上电复位。
V _{SS}	Р	接地
V_{DD}	Р	电源(2.0 - 5.5V)
时钟		
XTAL1	I	谐振器输入
XTAL2	0	谐振器输出
编程接口	•	
TDO (P0.7)	0	调试接口:测试数据输出
TMS (P0.6)	I	调试接口:测试模式选择
TDI (P0.5)	I	调试接口:测试数据输入
TCK (P0.4)	I	调试接口:测试时钟输入
注意: 当P0.4 - P0.7作为调]试接口时	- P0.4 - P0.7功能被禁止

6. SFR映像

SH79F1622内置256字节的直接寻址寄存器,包括通用数据存储器和特殊功能寄存器(SFR),SH79F1622的SFR有以下几种:

CPU内核寄存器: ACC, B, PSW, SP, DPL, DPH

CPU内核增强寄存器: AUXC, DPL1, DPH1, INSCON, XPAGE 电源时钟控制寄存器: PCON, SUSLO, CLKL0, CLKRC0, CLKRC1

Flash寄存器: IB_OFFSET, IB_DATA, IB_CON1, IB_CON2, IB_CON3, IB_CON4, IB_CON5

数据页面控制寄存器: XPAGE 看门狗定时器寄存器: RSTSTAT 系统时钟控制寄存器: CLKCON

中断寄存器: IENO, IEN1, IENC, IPH0, IPL0, IPH1, IPL1, EXF1

I/O端口寄存器: P0, P1, P2, P3, P4, P5, P0CR, P1CR, P2CR, P3CR, P4CR, P5CR, P0PCR,

P1PCR, P2PCR, P3PCR, P4PCR, P5PCR, P1OS, P0SS, P1SS, P2SS

定时器寄存器: TCON, T2CON, T2MOD, TH2, TL2, RCAP2L, RCAP2H, T3CON, TL3, TH3,

T4CON, TH4, TL4

EUART寄存器: SCON, SBUF, SADEN, SADDR, PCON, SBRTL, SBRTH, BFINE

TONE寄存器: TVCR1, TVCR2, TGCR11, TGCR12, TGCR21, TGCR22

TKS存器: TKCON1, TKF0, TKU1, TKU2, TKDIV01, TKDIV02, TKDIV03, TKDIV04, TKVREF,

TKST, TKRANDOM, TKCOUNT, TKW

LED寄存器: DISPCON, SEG01, SEG02, DISPCLK, LEDCOM, DISCOM, LIGHTCOM

TWI寄存器: TWIDAT, TWIADR, TWISTA, TWICON

Table 6.1 C51核SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ACC	E0H	累加器	00000000	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
В	F0H	B寄存器	00000000	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
AUXC	F1H	C寄存器	00000000	C.7	C.6	C.5	C.4	C.3	C.2	C.1	C.0
PSW	D0H	程序状态字	00000000	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81H	堆栈指针	00000111	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
DPL	82H	数据指针低位字节	00000000	DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0
DPH	83H	数据指针高位字节	00000000	DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0
DPL1	84H	数据指针1低位字节	00000000	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0
DPH1	85H	数据指针1高位字节	00000000	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0
INSCON	86H	数据指针选择	-000-0	-	BKS0	-	-	DIV	MUL	-	DPS

Table 6.2 电源时钟控制SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	87H	电源控制	000000	SMOD	SSTAT	=	-	GF1	GF0	PD	IDL
SUSLO	8EH	电源控制保护字	00000000	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0

Table 6.3 Flash控制SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFF SET	FBH	可编程flash低位字节偏移	00000000	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
IB_DATA	FCH	可编程flash数据寄存器	00000000	IB_DATA.7	IB_DATA.6	IB_DATA.5	IB_DATA.4	IB_DATA.3	IB_DATA.2	IB_DATA.1	IB_DATA.0
IB_CON1	F2H	flash控制寄存器1	00000000	IB_CON1.7	IB_CON1.6	IB_CON1.5	IB_CON1.4	IB_CON1.3	IB_CON1.2	IB_CON1.1	IB_CON1.0
IB_CON2	F3H	flash控制寄存器2	0000		-		-	IB_CON2.3	IB_CON2.2	IB_CON2.1	IB_CON2.0
IB_CON3	F4H	flash控制寄存器3	0000	-	-	-	-	IB_CON3.3	IB_CON3.2	IB_CON3.1	IB_CON3.0
IB_CON4	F5H	flash控制寄存器4	0000		-		-	IB_CON4.3	IB_CON4.2	IB_CON4.1	IB_CON4.0
IB_CON5	F6H	flash控制寄存器5	0000	-	-	-	-	IB_CON5.3	IB_CON5.2	IB_CON5.1	IB_CON5.0
XPAGE	F7H	编程用地址选择寄存器	00000000	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
FLASHCON	А7Н	flash控制寄存器	0	-	-	-	-	-	-	-	FAC

Table 6.4 WDT SFR

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RSTSTAT	B1H	看门狗定时器控制寄存器	0-000000*	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0

注意: *表示不同情况的复位决定RSTSTAT寄存器中的复位值,详见WDT章节

Table 6.5 时钟控制SFR

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	B2H	系统时钟选择	111-00	32k_SPDUP	CLKS1	CLKS0	-	OSC2ON	FS	-	-

Table 6.6 中断 SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN0	A8H	中断允许控制0	0-00-000	EA	-	ET2	ES	-	EX1	TKIE	EX0
IEN1	A9H	中断允许控制1	0000-	-	-	-	ET3	ETWI	EX3	EX2	-
IENC	BAH	中断通道允许控制	0000	-	-	-	-	EXS43	EXS42	EXS41	EXS40
IENC1	ВВН	中断通道允许控制1	00	-	-	-	-	-	-	ESCM1	ELPD
IPH0	B4H	中断优先权控制高位0	-0000000	-	PT4H	PT2H	PS0H	PTKH	PX1H	PTWH	PX0H
IPL0	B8H	中断优先权控制低位0	-000-000	-	PT4L	PT2L	PS0L	PTKL	PX1L	PTWL	PX0L
IPH1	B5H	中断优先权控制高位1	000000-	-	-	-	РТ3Н	-	PX4H	PX2H	-
IPL1	В9Н	中断优先权控制低位1	0-00-00-	-	-	-	PT3L	-	PX4L	PX2L	-
EXF0	E8H	外部中断寄存器0	00000000	IT4.1	IT4.0	-	-	IT2.1	IT2.0	IE3	IE2
EXF1	D8H	外部中断寄存器1	0000	-	-	-	-	IF43	IF42	IF41	IF40
EXCON0	ADH	外部中断采样次数控制	000000	-	-	I2P1	I2P0	I1P1	I1P0	I0P1	I0P0
EXCON1	AEH	外部中断采样次数控制	00000000	I43P1	I43P0	I42P1	I42P0	I41P1	I41P0	I40P1	I40P0

Table 6.7 端口SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0	80H	8位端口0	00000000	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1	90H	8位端口1	00000000	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P2	A0H	8位端口2	00000000	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
Р3	вон	8位端口3	0	-	-	-	-	-	-	-	P3.0
P0CR	E1H	端口0输入/输出方向控制	00000000	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR	E2H	端口1输入/输出方向控制	00000000	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
P2CR	ЕЗН	端口2输入/输出方向控制	00000000	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR	E4H	端口3输入/输出方向控制	00000000	-	-	-	-	-	-	-	P3CR.0
P0PCR	E9H	端口0内部上拉允许	00000000	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR	EAH	端口1内部上拉允许	00000000	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0
P2PCR	EBH	端口2内部上拉允许	00000000	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR	ECH	端口3内部上拉允许	00000000	-	-	-	-	-	-	-	P3PCR.0
P1OS	EFH	输出模式选择	00	-	P1OS.6	P1OS.5	-	-	-	-	-
P0SS	D9H	功能模式选择	00000000	P0SS.7	P0SS.6	P0SS.5	P0SS.4	P0SS.3	P0SS.2	P0SS.1	P0SS.0
P1SS	DAH	功能模式选择	0000	-	-	-	P1SS.4	P1SS.3	P1SS.2	P1SS.1	-
P2SS	DBH	功能模式选择	00000000	P2SS.7	P2SS.6	P2SS.5	P2SS.4	P2SS.3	P2SS.2	P2SS.1	P2SS.0

Table 6.8 定时器 SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON	88H	定时器/计数器控制寄存器	0000	-	-	-	-	IE1	IT1	IE0	IT0
T2CON	C8H	定时器/计数器2控制寄存器	00000000	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T 2	CP/RL2
T2MOD	C9H	定时器/计数器2模式寄存器	000	TCLKP2	-	-	-	-	-	T2OE	DCEN
RCAP2L	CAH	定时器/计数器2重载/截获低位字节	00000000	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H	СВН	定时器/计数器2重载/截获高位字节	00000000	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2	ССН	定时器/计数器2低位字节	00000000	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	CDH	定时器/计数器2高位字节	00000000	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
T3CON	C0H	定时器/计数器3控制寄存器	0-00-000	TF3	-	T3PS.1	T3PS.0	-	TR3	T3CLKS.1	T3CLKS.0
TL3	C4H	定时器/计数器3低位字节	00000000	TL3.7	TL3.6	TL3.5	TL3.4	TL3.3	TL3.2	TL3.1	TL3.0
TH3	C5H	定时器/计数器3高位字节	00000000	TH3.7	TH3.6	TH3.5	TH3.4	TH3.3	TH3.2	TH3.1	TH3.0
T4CON	C2H	定时器/计数器4模式寄存器	00000000	TF4	TC4	T4PS1	T4PS0	T4M1	T4M0	TR4	T4CLKS
TL4	D6H	定时器/计数器4低位字节	00000000	TL4.7	TL4.6	TL4.5	TL4.4	TL4.3	TL4.2	TL4.1	TL4.0
TH4	D7H	定时器/计数器4高位字节	00000000	TH4.7	TH4.6	TH4.5	TH4.4	TH4.3	TH4.2	TH4.1	TH4.0

Table 6.9 EUART SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCON	98H	串行控制	00000000	SM0/FE	SM1/RXOV	SM2/TXCOL	REN	TB8	RB8	TI	RI
SBUF	99H	串行数据缓冲器	00000000	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
SADEN	9BH	从属地址掩码	00000000	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
SADDR	9AH	从属地址	00000000	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
PCON	87H	电源和串行控制	00000	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
SBRTH	9CH	波特率发生器寄存器	00000000	SBRTEN	SBRT.14	SBRT.13	SBRT.12	SBRT.11	SBRT.10	SBRT.9	SBRT.8
SBRTL	9DH	波特率发生器寄存器	00000000	SBRT.7	SBRT.6	SBRT.5	SBRT.4	SBRT.3	SBRT.2	SBRT.1	SBRT.0
SFINE	9EH	波特率发生器微调寄存器	0000	-	-	-	-	SFINE.3	SFINE.2	SFINE.1	SFINE.0

Table 6.10TONESFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TVCR1	CFH	音频发生器1音量控制	00000000	TG1EN	TV1.6	TV1.5	TV1.4	TV1.3	TV1.2	TV1.1	TV1.0
TVCR2	D1H	音频发生器2音量控制	00000000	TG2EN	TV2.6	TV2.5	TV2.4	TV2.3	TV2.2	TV2.1	TV2.0
TGCR11	D2H	音频发生器1	00000000	TG1.7	TG1.6	TG1.5	TG1.4	TG1.3	TG1.2	TG1.1	TG1.0
TGCR12	D3H	音频发生器1	00000000	TG1.15	TG1.14	TG1.13	TG1.12	TG1.11	TG1.10	TG1.9	TG1.8
TGCR21	D4H	音频发生器2	00000000	TG2.7	TG2.6	TG2.5	TG2.4	TG2.3	TG2.2	TG2.1	TG2.0
TGCR22	D5H	音频发生器2	00000000	TG2.15	TG2.14	TG2.13	TG2.12	TG2.11	TG2.10	TG2.9	TG2.8

Table 6.11 TK SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKCON1	A1H	触摸按键功能控制寄存器	0-000000	TKCON	-	TKGO/DON E	SHARE	MODE	OVDD	FSW1	FSW0
TKF0	A2H	触摸按键中断标志位寄存器	-00000	-	IFERR	IFGO	IFAVE	IFCOUNT	IFTKOV	-	-
TKU1	A4H	触摸按键通道选择寄存器	00000000	TK8	TK7	TK6	TK5	TK4	TK3	TK2	TK1
TKU2	A5H	触摸按键通道选择寄存器	00000000	TK16	TK15	TK14	TK13	TK12	TK11	TK10	TK9
TKU3	A6H	触摸按键通道选择寄存器	0000	-	-	-	-	TK20	TK19	TK18	TK17
TKDIV01	91H	触摸按键放大系数寄存器	00000000	DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0
TKDIV02	92H	触摸按键放大系数寄存器	00000000	DIV15	DIV14	DIV13	DIV12	DIV11	DIV10	DIV9	DIV8
TKDIV03	93H	触摸按键放大系数寄存器	00000000	DIV23	DIV22	DIV21	DIV20	DIV19	DIV18	DIV17	DIV16
TKDIV04	94H	触摸按键放大系数寄存器	0000	-	-	-	-	DIV27	DIV26	DIV25	DIV24
TKVREF	95H	基准电压源选择寄存器	00000000	VREF1	VREF0	CMPD1	CMPD0	VTK1	VTK0	TUNE1	TUNE0
TKST	АЗН	触摸按键频率选择寄存器	-0000000	-	ST.6	ST.5	ST.4	ST.3	ST.2	ST.1	ST.0
TKRANDOM	96H	触摸按键频率选择寄存器	000000	TKRADON	TKOFFSET	TKVDD	TKOUT	-	-	RANDOM1	RANDOM1
TKCOUNT	97H	触摸按键时钟宽度选择寄存器	00000000	COUNT0.7	COUNT0.6	COUNT0.5	COUNT0.4	COUNT0.3	COUNT0.2	COUNT0.1	COUNT0.0
TKW	BDH	触摸按键通道错误显示寄存器	00000	-	-	-	TW.4	TW.3	TW.2	TW.1	TW.0

Table 6.12 LED SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON	89H	LED功能选择寄存器	-000	-	LEDON	-	-	-	-	DUTY1	DUTY0
SEG01	8AH	SEG功能选择寄存器	00000000	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
SEG02	8BH	SEG功能选择寄存器	00000000	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8
DISPCLK	8CH	LED时钟频率选择寄存器	00000000	DCK0.7	DCK0.6	DCK0.5	DCK0.4	DCK0.3	DCK0.2	DCK0.1	DCK0.0
LEDCOM	8FH	COM功能选择寄存器	-0000000	-	COM7	COM6	COM5	COM4	СОМЗ	COM2	COM1
DISCOM	9FH	LED COM扫描宽度寄存器	00000000	DCOM.7	DCOM.6	DCOM.5	DCOM.4	DCOM.3	DCOM.2	DCOM.1	DCOM.0
LIGHTCO M	8DH	LED COM辉度选择寄存器	000	-	-	-	-	-	CC3	CC2	CC1

Table 6.13 TWI SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TWICON	F8H	TWI设置寄存器	00000000	TOUT	ENTWI	STA	STO	TWINT	AA	TFREE	EFREE
TWISTA	E6H	TWI状态寄存器	11111000	TWISTA.7	TWISTA.6	TWISTA.5	TWISTA.4	TWISTA.3	CR.1	CR.0	ETOT
TWIADR	E7H	TWI数据地址寄存器	00000000	TWA.6	TWA.5	TWA.4	TWA.3	TWA.2	TWA.1	TWA.0	GC
TWIDAT	DFH	TWI数据输入/输出寄存器	00000000	TWIDAT.7	TWIDAT.6	TWIDAT.5	TWIDAT.4	TWIDAT.3	TWIDAT.2	TWIDAT.1	TWIDAT.0

SFR映像图 Bank0

	可位寻址				不可位寻址				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8H	TWICON			IB_OFFSET	IB_DATA				FFH
F0H	В	AUXC	IB_CON1	IB_CON2	IB_CON3	IB_CON4	IB_CON5	XPAGE	F7H
E8H	EXF0	P0PCR	P1PCR	P2PCR	P3PCR			P1OS	EFH
E0H	ACC	P0CR	P1CR	P2CR	P3CR		TWISTA	TWIADR	E7H
D8H	EXF1	P0SS	P1SS	P2SS				TWIDAT	DFH
D0H	PSW	TVCR2	TGCR11	TGCR12	TGCR21	TGCR22	TL4	TH4	D7H
C8H	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2		TVCR1	CFH
C0H	T3CON		T4CON		TL3	TH3			C7H
B8H	IPL0	IPL1	IENC	IENC1		TKW			BFH
вон	P3	RSTSTAT	CLKCON		IPH0	IPH1			В7Н
A8H	IEN0	IEN1				EXCON0	EXCON1		AFH
A0H	P2	TKCON1	TKF0	TKST	TKU1	TKU2	TKU3	FLASHCON	A7H
98H	SCON	SBUF	SADDR	SADEN	SBRTH	SBRTL	SFINE	DISCOM	9FH
90H	P1	TKDIV01	TKDIV02	TKDIV03	TKDIV04	TKVREF	TKRANDOM	TKCOUNT	97H
88H	TCON	DISPCON	SEG01	SEG02	DISPCLK	LIGHTCOM	SUSLO	LEDCOM	8FH
80H	P0	SP	DPL	DPH	DPL1	DPH1	INSCON	PCON	87H
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

7. 标准功能

7.1 CPU

7.1.1 CPU内核特殊功能寄存器

特性

■ CPU内核寄存器: ACC, B, PSW, SP, DPL, DPH

累加器

累加器ACC是一个常用的专用寄存器,指令系统中采用A作为累加器的助记符。

B寄存器

在乘除法指令中,会用到B寄存器。在其它指令中,B寄存器可作为暂存器来使用。

栈指针(SP)

栈指针SP是一个8位专用寄存器,在执行PUSH、各种子程序调用、中断响应等指令时,SP先加1,再将数据压栈;执行POP、RET、RETI等指令时,数据退出堆栈后SP再减1。堆栈栈顶可以是片上内部RAM(00H-FFH)的任意地址,系统复位后,SP初始化为07H,使得堆栈事实上由08H地址开始。

程序状态字 (PSW) 寄存器

程序状态字(PSW)寄存器包含了程序状态信息。

数据指针(DPTR)

数据指针DPTR是一个16位专用寄存器,其高位字节寄存器用DPH表示,低位字节寄存器用DPL表示。它们既可以作为一个16位寄存器DPTR来处理,也可以作为2个独立的8位寄存器DPH和DPL来处理。

Table7.1 PSW寄存器

D0H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	СҮ	进位标志位 0: 算术或逻辑运算中,没有进位或借位发生 1: 算术或逻辑运算中,有进位或借位发生
6	AC	辅助进位标志位0: 算数逻辑运算中,没有辅助进位或借位发生1: 算数逻辑运算中,有辅助进位或借位发生
5	F0	F0标志位 用户自定义标志位
4-3	RS[1:0]	R0-R7寄存器页选择位 00:页0(映射到00H-07H) 01:页1(映射到08H-0FH) 10:页2(映射到10H-17H) 11:页3(映射到18H-1FH)
2	ov	溢出标志位 0: 没有溢出发生 1: 有溢出发生
1	F1	F1标志位 用户自定义标志位
0	Р	奇偶校验位 0: 累加器A中值为1的位数为偶数 1: 累加器A中值为1的位数为奇数

7.1.2 CPU增强内核特殊功能寄存器

- 扩展的'MUL'和'DIV'指令: 16位*8位, 16位/8位
- 双数据指针
- CPU增强内核寄存器: AUXC, DPL1, DPH1, INSCON

SH79F1622扩展了'MUL'和'DIV'的指令,使用一个新寄存器-AUXC寄存器保存运算数据的高8位,以实现16位运算。在16位乘除法指令中,会用到AUXC寄存器。在其它指令中,AUXC寄存器可作为暂存器来使用。

CPU在复位后进入标准模式,'MUL'和'DIV'的指令操作和标准8051指令操作一致。当INSCON寄存器的相应位置1后,'MUL'和'DIV'指令的16位操作功能被打开。

				结果	
	米 II-		A B		AUXC
MUL	INSCON.2 = 0; 8位模式	(A)*(B)	低位字节	高位字节	
WICE	INSCON.2 = 1; 16位模式	(AUXC A)*(B)	低位字节	中位字节	高位字节
DIV	INSCON.3 = 0; 8位模式	(A)/(B)	商低位字节	余数	
DIV	INSCON.3 = 1; 16位模式	(AUXC A)/(B)	商低位字节	余数	商高位字节

双数据指针

使用双数据指针能加速数据存储移动。标准数据指针被命名为DPTR而新型数据指针命名为DPTR1。

数据指针DPTR1与DPTR类似,是一个16位专用寄存器,其高位字节寄存器用DPH1表示,低位字节寄存器用DPL1表示。它们既可以作为一个16位寄存器DPTR1来处理,也可以作为2个独立的8位寄存器DPH1和DPL1来处理。

通过对INSCON寄存器中的DPS位置1或清0选择两个数据指针中的一个。所有读取或操作DPTR的相关指令将会选择最近一次选择的数据指针。

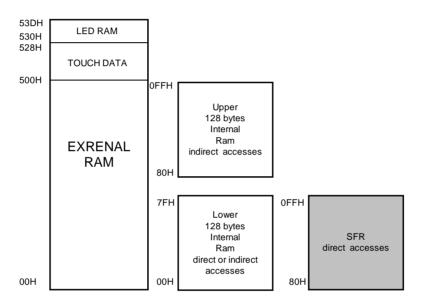
7.1.3 寄存器

Table7.2 数据指针选择寄存器

86H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
INSCON	-	BKS0	-	-	DIV	MUL	-	DPS
读/写	-	读/写	-	-	读/写	读/写	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	0	-	-	0	0	-	0

位编号	位符号	说明
6	BKS0	特殊功能寄存器页选择位 0:选择特殊功能寄存器页0 1:选择特殊功能寄存器页1
3	DIV	16位/8位除法选择位 0: 8位除法 1: 16位除法
2	MUL	16位/8位乘法选择位 0: 8位乘法 1: 16位乘法
0	DPS	数据指针选择位 0: 数据指针 1: 数据指针1

7.2 随机数据存储器 (RAM)


7.2.1 特性

SH79F1622为数据存储提供了内部RAM和外部RAM。下列为存储器空间分配:

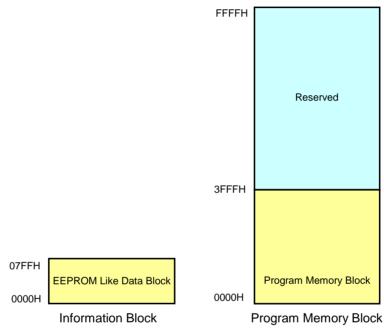
- 低位128字节的RAM(地址从00H到7FH)可直接或间接寻址。
- 高位128字节的RAM(地址从80H到FFH)只能间接寻址。
- 特殊功能寄存器(SFR, 地址从80H到FFH)只能直接寻址。
- 外部RAM可通过MOVX指令间接访问。

高位128字节的RAM占用的地址空间和SFR相同,但在物理上与SFR的空间是分离的。当一个指令访问高于地址7FH的内部位置时,CPU可以根据访问的指令类型来区分是访问高位128字节数据RAM还是访问SFR。

SH79F1622在外部数据空间额外提供了1280字节RAM,支持高级语言。SH79F1622还配置了14字节的LED RAM(530H~53DH).

内部和外部RAM配置

SH79F1622支持传统的访问外部RAM方法。可以使用MOVXA,@Ri或MOVX@Ri,A;来访问外部低256字节RAM;使用MOVXA,@DPTR或MOVX@DPTR,A来访问外部1280字节RAM。


7.3 Flash程序存储器

7.3.1 特性

- Flash存储器包括16 x 1KByte,总共16KB
- 集成类EEPROM 存储器8 x 256B, 总共2KB
- 在工作电压范围内都能进行编程和擦除操作
- 支持4种代码保护模式
- 在线编程 (ICP) 操作支持写入、读取和擦除操作
- 支持整体/扇区擦除和编程
- 编程/擦除次数:程序区:至少10,000次。

类EEPROM区: 至少100,000次

- 数据保存年限:至少10年
- 低功耗

SH79F1622为存储程序代码内置16K可编程Flash程序存储区(Program Memory Block),支持在线编程(ICP)模式和扇区自编程(SSP)模式对Flash存储器操作。每个扇区1024字节。

SH79F1622还内置2048字节的类EEPR0M存储区用于存放用户数据。每个扇区256字节,总共8个扇区。

Flash操作定义:

在线编程(ICP)模式:通过Flash编程器对Flash存储器进行擦、读、写操作。

扇区自编程(SSP)模式:用户程序代码在Flash代码区中运行,对Flash存储器(包括Flash代码区和类EEPROM区)进行擦、读、写操作,但无法擦除代码自身所在的扇区。

Flash存储器支持以下操作:

(1) 代码保护控制模式编程

SH79F1622的代码保护功能为用户代码提供了高性能的安全措施。共提供4种保护模式。

代码保护模式0:对烧写器加密,允许/禁止任何编程器的写入/读取操作(不包括整体擦除),以4K(4个扇区)为单位,可以分开保护。

代码保护模式1:对MOVC指令加密,允许/禁止在其它扇区中通过MOVC指令进行读取操作,或通过SSP模式进行擦除/写入操作,以4K(4个扇区)为单位,可以分开保护.

代码保护模式2: SSP功能允许/禁止控制, 选中后,芯片对code区域的SSP操作(擦除或者写入,不包括读取)是禁止的,但是不会禁止芯片对类EEPROM的操作。

代码保护模式 3: 客户密码保护,可由客户自设密码,密码由 6 字节组成。如果将此功能开启,表示在烧写器或仿真器工具对芯片做任何操作(读出,写入,擦除或者仿真)之前先输入这个密码,如果这个密码正确,则芯片允许烧写器或仿真器工具进行相应的操作,反之则报错,无法执行相应操作。

用户必须使用下列方式才能完成代码保护控制模式的设定:

- 1.Flash编程器在ICP模式设置相应的保护位,以进入所需的保护模式
- 2.SSP模式不支持代码保护控制模式编程

(2) 整体擦除

无论代码保护控制模式的状态如何,整体擦除操作都将会擦除所有程序,代码选项,代码保护位, 但是不会擦除类EEPROM存储区。

用户必须使用下列方式才能完成整体擦除:

Flash编程器在ICP模式发出整体擦除指令,进行整体擦除。

SSP模式不支持整体擦除。

(3) 扇区擦除

扇区擦除操作将会擦除所选扇区中内容。用户程序(SSP)和Flash编程器都能执行该操作。

若需用户程序执行该操作,必须禁止所选扇区的代码保护控制模式1和保护模式2。

若需编程器执行该操作,必须禁止所选扇区的代码保护控制模式0,如果保护模式3使能,必须输入正确密码。

用户必须使用下列2种方式之一才能完成扇区擦除:

1.Flash编程器在ICP模式发出扇区擦除指令,进行扇区擦除。

2.通过SSP功能发出扇区擦除指令,进行扇区擦除(详见在扇区自编程章节)。

(4) 类EEPROM存储区擦除

类EEPROM存储区擦除操作将会擦除类EEPROM存储区中的内容。用户程序(SSP)和Flash编程器都能执行该操作。用户必须使用下列2种方式之一才能完成类EEPROM存储区擦除:

1.Flash编程器在ICP模式发出类EEPROM存储区擦除指令,进行类EEPROM存储区擦除。

2.通过SSP功能发出类EEPROM存储区擦除指令,进行类EEPROM存储区擦除(详见在扇区自编程章节)。

(5) 写/读代码

读/写代码操作可以将代码从Flash存储器中读出或写入。用户程序(SSP)和编程器都能执行该操作。

若需用户程序执行读代码操作,必须禁止所选扇区的代码保护控制模式1。但不管保护位如何设置,用户程序都能读程序自身所在扇区(1K为单位)。

若需用户程序执行写代码操作,必须禁止所选扇区的代码保护控制模式1和代码保护模式2。

注: 若只使能扇区的代码保护控制模式1,用户程序不能写其它扇区,但能写程序自身所在扇区(1K为单位),

若需编程器执行该操作,必须禁止所选扇区的代码保护控制模式0。

用户必须使用下列2种方式之一才能完成写/读代码:

- 1.Flash编程器在ICP模式发出写/读代码指令,进行写/读代码。
- 2.通过SSP功能发出写代码指令,进行写代码操作;通过MOVC指令执行读代码操作。

(6) 写/读类EEPROM存储区

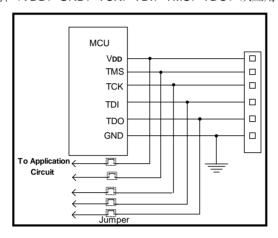
读/写类EEPROM存储区操作可以将数据从类EEPROM存储区中读出或写入。用户程序(SSP)和Flash编程器都能执行该操作。

用户必须使用下列2方式之一才能完成写/读类EEPROM存储区:

- 1.Flash编程器在ICP模式发出写/读类EEPROM存储区指令,进行写/读类EEPROM存储区。
- 2.通过SSP功能发出写类EEPROM存储区指令,进行写类EEPROM操作:通过MOVC指令执行读类EEPROM操作。

Flash存储器操作汇总

操作	ICP	SSP
代码保护	支持	不支持
扇区擦除	支持	支持
州西绿树	(无安全位)	(无安全位)
整体擦除	支持	不支持
类EEPROM存储区擦除	支持	支持
写/读代码	支持	支持
与/ 以 代何	(无安全位)	(无安全位)
读/写类EEPROM存储区	支持	支持



7.3.2 ICP模式下的Flash操作

ICP模式为通过Flash编程器对MCU进行编程,可以在MCU焊在用户板上以后编程。ICP模式下,用户系统必须关机后Flash编程器才能通过ICP编程接口刷新Flash存储器。ICP编程接口包括6个引脚(VDD,GND,TCK,TDI,TMS,TDO)。

编程器使用4个JTAG引脚(TDO,TDI,TCK,TMS)进入编程模式。只有将特定波形输入4个引脚后,CPU才能进入编程模式。如需详细说明请参考Flash编程器用户指南。

在ICP模式中,通过6线接口编程器能完成所有Flash操作。因为编程信号非常敏感,所以使用编程器编程时建议用户需要先用6个跳线将芯片的编程引脚(VDD,GND,TCK,TDI,TMS,TDO)从应用电路中分离出来,如下图所示。

当采用ICP模式进行操作时,建议按照如下步骤进行操作:

- (1) 在开始编程前断开跳线(jumper),从应用电路中分离编程引脚
- (2) 将芯片编程引脚连接至Flash编程器编程接口,开始编程
- (3) 编程结束后断开Flash编程器接口,连接跳线恢复应用电路

如果不加跳线,需保证电源线上的电容负载不超过100uF,4根信号线上的电容负载不超过0.01uf,电阻负载不小于1K阻值.

7.4 扇区自编程 (SSP) 功能

7.4.1 寄存器

(1) 擦除/编程用扇区选择和编程用地址偏移量寄存器

此寄存器用来选择待擦除或者待编程扇区的区号,配合IB_OFFSET寄存器来表示待编程字节在扇区内的地址偏移量。

对于程序存储区,一个扇区为1024字节,寄存器定义如下:

Table 7.3 擦除/编程用扇区选择和地址偏移寄存器

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
5-2	XPAGE[7:2]	被擦除/编程的存储单元扇区号(也即存储单元的最高4位地址),0000代表扇区0,依此类推。
1-0	XPAGE[1:0]	被擦除/编程的存储单元次高2位地址

Table 7.4 编程用地址偏移寄存器

FBH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_OFFSET[7:0]	被编程的存储单元低8位地址

XPAGE[1:0]和IB_OFFSET[7:0]共10位,可以表示1个程序存储扇区内全部1024个字节的偏移量。

类 EEPROM 扇区,一个扇区为 256 字节,共 8 个扇区,寄存器定义如下:

Table 7.5 擦除/编程用扇区选择寄存器

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-3	XPAGE[7:3]	在擦除/编程扇区时无意义
2-0	XPAGE[2:0]	被擦除/编程的扇区选择位 000: 扇区0 001: 扇区1 111: 扇区7

类EEPROM块区的访问可通过指令"MOVC A, @A+DPTR"或"MOVC A, @A+PC"实现.

注意: 需要将FLASHCON寄存器中的FAC位置1。

Table 7.6 编程用地址偏移寄存器

FBH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_OFFSET[7:0]	被擦除/编程的块单元地址

IB_OFFSET[7:0]共8位,可以表示1个块区内全部256个字节的偏移量。

(2) 编程用数据寄存器

Table 7.7 编程用数据寄存器

FCH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_DATA	IB_ DATA.7	IB_ DATA.6	IB_ DATA.5	IB_ DATA.4	IB_ DATA.3	IB_ DATA.2	IB_ DATA.1	IB_ DATA.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_DATA [7:0]	待编程数据

3) 操作模式选择寄存器

Table 7.8 SSP 操作模式选择寄存器

F2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB CON1	IB_CON							
IB_CONT	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_CON1[7:0]	SSP操作选择 0xE6: 扇区擦除 0x6E: 存储单元编程

4) SSP流程控制寄存器

Table 7.9 SSP 流程控制寄存器 1

F3H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON2	1	-	-	-	IB_CON 2.3	IB_CON 2.2	IB_CON 2.1	IB_CON 2.0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON2 [3:0]	必须为05H,否则Flash编程将会终止

Table7.10 SSP 流程控制寄存器 2

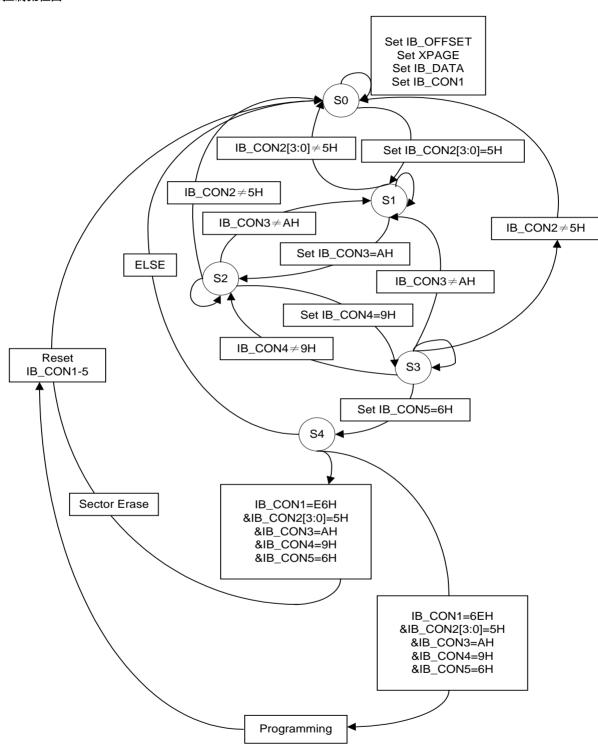
F4H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON3	-	-	-	-	IB_CON 3.3	IB_CON 3.2	IB_CON 3.1	IB_CON 3.0
	-	-	-	-	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON3[3:0]	必须为0AH,否则Flash编程将会终止

Table7.11 SSP 流程控制寄存器 3

F5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON4	-	-	-	-	IB_CON 4.3	IB_CON 4.2	IB_CON 4.1	IB_CON 4.0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	-	-	-	ı	0	0	0	0

位编号	位符号	说明
3-0	IB_CON4[3:0]	必须为09H,否则Flash编程将会终止


Table7.12 SSP 流程控制寄存器 4

F6H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON5	-	-	-	-	IB_CON 5.3	IB_CON 5.2	IB_CON 5.1	IB_CON 5.0
读/写	-		-	-	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	-	1	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON5[3:0]	必须为06H,否则Flash编程将会终止

7.4.2 Flash控制流程图

7.4.3 SSP编程注意事项:

为确保顺利完成SSP编程,用户软件必须按以下步骤设置:

- (1) 对主程序区烧写: 注: 需关闭代码保护模式1和模式2.
- 1. 关闭中断;
- 2. 按相应的待编程扇区号设置XPAGE、IB_OFFSET;
- 3. 按编程需要,设置IB_DATA;
- 4. 按照顺序设置IB CON1~5;
- 5. 添加4个NOP指令;
- 6. 开始编程, CPU将进入IDLE模式:编程完成后自动退出IDLE模式
- 7. 如需继续写入数据, 跳转至第2步:
- 8. XPAGE寄存器清0:恢复中断设置。
- (2) 对主程序区扇区擦除: 注: 需关闭代码保护模式1和模式2.
- 1. 关闭中断;
- 2. 按相应的扇区设置XPAGE:
- 3. 按照顺序设置IB_CON1~5;
- 4. 添加4个NOP指令:
- 5. 开始擦除, CPU将进入IDLE模式; 擦除完成后自动退出IDLE模式;
- 6. 更多扇区擦除操作跳转至第2步;
- 7. 清除XPAGE,恢复中断设置。

(3) 读取:

使用"MOVC A, @A+DPTR"或"MOVC A, @A+PC"

(4) 对类EEPROM区域擦除烧写动作 注:此功能不受代码保护模式控制

对于类EEPROM的操作类似于主程序区Flash的操作,即类似上述A/B/C部分的描述。区别在于:

- 1. 在对类EEPROM进行擦除、写或读之前,应首先将FLASHCON寄存器的最低位FAC位置1。
- 2. 类EEPROM的扇区为256字节,而不是1024字节

特别需要注意的是, 当不需要对类EEPROM操作时, 必须将FAC位清0.

7.4.4 可读识别码

SH79F1622每颗芯片出厂后都固化有一个24位的可读识别码,它的值为0~0xffffff的随机值,它是无法擦除的,可以由程序或编程工具读出。

读识别码时,首先,设FAC位为1,然后给DPTR赋值 "0127DH~127FH",将A清0,再使用"MOVC A,@A+DPTR"来读取。

注意: 读完识别码后必须将FAC位清0, 否则会影响用户程序读代码区的指令执行。

FLASHCON寄存器的描述如下:

Table 7.13 访问控制寄存器

А7Н	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
FLASHCON	-	-	-	-	-	-	-	FAC
读/写	-	-	-	-	-	-	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-			-	-	0

位编号	位符号	说明
0	FAC	访问控制 0: MOVC指令或者SSP功能访问主程序区域 1: MOVC指令或者SSP功能访问类EEPROM区域

7.5 系统时钟和振荡器

7.5.1特件

- 支持2种振荡器类型: 32.768kHz晶体谐振器,内部27M RC振荡器,
- 内建27MHz 常温(±1%) RC振荡器
- 内建32.768kHz加速电路
- 内建系统时钟分频器

7.5.2时钟定义

SH79F1622几个内部时钟定义如下表所示: (参见后图)

32KCRYCLK: 从XTAL输入的32.768kHz晶体谐振器的时钟。f32KCRY定义为32KCRYCLK的频率。t32KCRY定义为32KCRYCLK

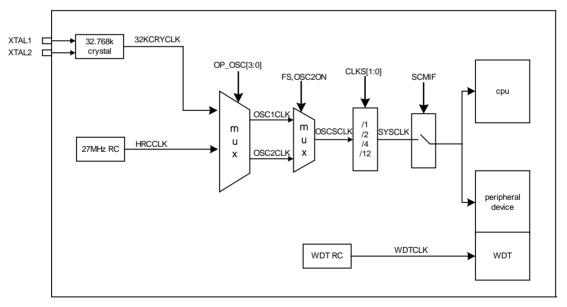
的周期。

RCCLK: 内部27MHz RC振荡器时钟。f_{HRC}定义为RCCLK的频率。t_{HRC}定义为RCCLK的周期。

WDTCLK: 内部的2kHz 看门狗RC振荡器时钟。f_{WDT}定义为WDTCLK的频率。t_{WDT}定义为WDTCLK的周期。

注意:

1.当代码选项OP_OSC=011时(详见**代码选项**章节),OSC1CLK为32.768kHz晶体振荡器,OSC2CLK为内部27MHz RC振荡器。


2.当代码选项OP_OSC=000时(详见代码选项章节),OSC1CLK为27MHz RC振荡器,OSC2CLK关闭。

OSCSCLK: 系统时钟频率分频器的输入时钟。这个时钟可能为OSC1CLK或者OSC2CLK,由寄存器FS选择。foscs定义为

OSCSCLK的频率。toscs定义为OSCSCLK的周期。

SYSCLK: 系统时钟,系统频率分频器的输出时钟。这个时钟为CPU指令周期的时钟。f_{SYS}定义为SYSCLK的频率。t_{SYS}定

义为SYSCLK的周期。

7.5.3概述

SH79F1622支持2种振荡器类型: 32.768kHz晶体谐振器,内部27MRC振荡器。通过代码选项OP_OSC(详见**代码选项**章节)的设置,可以选择两种振荡器类型作为系统的振荡器1(OSC1CLK)时钟源和振荡器2(OSC2CLK)时钟源。通过寄存器CLKCON和PLLCON的设置,可以选择一种作为系统频率(SYSCLK)用以支持CPU及片上外围设备。

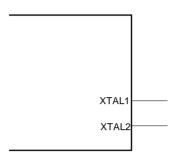
当选择振荡器1时钟(OSC1CLK)作为系统时钟频率分频器的输入时钟(OSCSCLK)(FS=0)。

当选择振荡器2时钟(OSC2CLK)作为系统时钟频率分频器的输入时钟(OSCSCLK)(FS=1)并且系统进入掉电(Power-Down)模式时,振荡器2时钟(OSC2CLK)会被关闭,而振荡器1时钟(OSC1CLK)仍然会被打开,用以支持片上外围设备(例如定时器3等)。

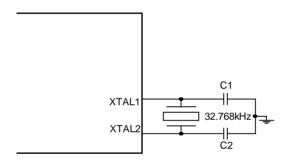
7.5.4寄存器

Table 7.14 系统时钟控制寄存器

B2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	32k_SPDUP	CLKS1	CLKS0	-	OSC2ON	FS	-	-
读/写	读/写	读/写	读/写	-	读/写	读/写	-	-
复位值(POR/WDT/LVR/PIN)	1	1	1	-	0	0	-	-


位编号	位符号	说明
122-914 J	压14.4	32.768kHz晶体谐振器加速模式控制位
		0: 32.768kHz振荡器常规模式,由软件清0。
		1: 32.768kHz振荡器加速模式,由软件或者硬件置1。
		此位在系统发生任何形式的复位,如上电复位,看门狗复位等时,自动由硬
		件设置1,用以加速32.768kHz振荡器起振,缩短32.768kHz振荡器的起振时间。
7	32k_SPDUP	如果有需要,本位也可以由软件置1或者清0。比如进入掉电模式(Power-down
		mode)前,可以将此位置1,掉电模式唤醒后再由软件清0。
		应该注意的是关闭32.768kHz加速模式(此位清0),可以节省系统的耗电。
		只有代码选项OP_OSC为011时(选择32.768kHz晶体振荡器,详见 代码选项 章
		节),此控制位才有效。
		系统时钟预分频器
		00: f _{SYS} = f _{OSCS}
		01: f _{SYS} = f _{OSCS} / 2
6-5	CLKS[1: 0]	$10: f_{SYS} = f_{OSCS} / 4$
		11: $f_{SYS} = f_{OSCS} / 12$
		如果选择32.768kHz振荡器为OSCSCLK时钟源,则f _{SYS} = f _{OSCS} ,与CLKS[1:0]
		内容无关。
		OSC2CLK开关控制寄存器
3	OSC2ON	0: 关闭OSC2CLK
		1: 打开OSC2CLK
		频率选择位
2	FS	0: 选择OSC1CLK为OSCSCLK
		1: 选择OSC2CLK为OSCSCLK

注意:系统时钟切换详见7.5章节。



7.5.5振荡器类型

(1) OP_OSC=000: 内部RC振荡器,XTAL和XTALX引脚与I/O共享

(2) OP_OSC=011: 从XTAL输入32.768kHz晶体谐振器,内部RC振荡器,XTALX引脚与I/O共享

7.5.6谐振器负载电容选择

	晶体谐振器		夕 沙
频率	C1	C2	备注
32.768kHz	5~12.5pF	5~12.5pF	推荐使用φ3x8 32.768kHz晶振

注意事项:

表中负载电容为设计参考数据!

以上电容值可通过谐振器基本的起振和运行测试,**并非最优值。** 请注意印制板上的杂散电容,用户应在超过应用电压和温度的条件下测试谐振器的性能。 在应用陶瓷谐振器/晶体谐振器之前,用户需向谐振器生产厂要求相关应用参数以获得最佳性能。

7.6 I/O端口

7.6.1 特性

- 25个双向I/O端口
- I/O端口可与其它功能共享

SH79F1622提供25个位可编程双向I/O端口。端口数据在寄存器Px中。每个I/O口均有内部上拉电阻。端口控制寄存器(PxCRy)控制端口是作为输入或者输出。当端口作为输入时,每个I/O端口带有由PxPCRy控制的内部上拉电阻(x=0-5,y=0-7)。

SH79F1622的有些I/O引脚能与选择功能共享。当所有功能都允许时,在CPU中存在优先权以避免功能冲突。(详见**端口共享**章节)。

SH79F1622为SOP16 pin封装时,不使用的I/O(较20PIN引脚图中少掉的P0.3,P1.1,P1.2,P1.6),需要将其设置成输出低电平,以避免功能冲突。

7.6.2 寄存器

Table 7.15 端口控制寄存器

E1H - E5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0CR (E1H)	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR (E2H)	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
P2CR (E3H)	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR (E4H)	-	-	-	-	-	-	-	P3CR.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PxCRy x = 0-5, y = 0-7	端口输入/输出控制寄存器 0:输入模式 1:输出模式

Table 7.16 端口上拉电阻控制寄存器

E9H - ECH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0PCR (E9H)	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR (EAH)	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0
P2PCR (EBH)	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR (ECH)	-	-	-	-	-	-	-	P3PCR.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

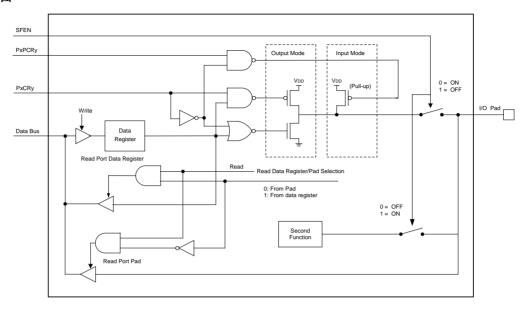
位编号	位符号	说明
7-0	PxPCRy x = 0-5, y = 0-7	输入端口内部上拉电阻控制 0: 内部上拉电阻关闭 1: 内部上拉电阻开启

Table 7.17 端口数据寄存器

14. 1344H 14 HB								
80H - C0H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0 (80H)	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1 (90H)	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P2 (A0H)	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
P3 (B0H)	-	-	-	-	-	-	-	P3.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	Px.y x = 0-5, y = 0-7	端口数据寄存器

Table 7.18 端口模式选择寄存器


EFH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P1OS	-	P10S.6	P10S.5	-	-	-	-	-
读/写	-	读/写	读/写	-	-	-	-	-
复位值 (POR/WDT/LVR/PIN)	-	0	0	-	-	-	-	-

位编号	位符号	说明
5-4	P1OS.x x = 6-5	端口 0输出模式选择 0: 引脚输出模式为CMOS推挽输出 1: 引脚输出模式为N沟道开漏输出

注意: P1.7, P3.0端口作为为N-通道的开漏I/O, 但是此时端口电压不得超过VDD+0.3V。

7.6.3 端口模块图

注意:

- (1) 输入端口读操作直接读引脚电平。
- (2) 输出端口读操作的输入源有两种,一种是从端口数据寄存器读取,另一种是直接读引脚电平。
- (3) 用读取指令来区分: 读-改-写指令是读寄存器, 而其它指令读引脚电平。
- (4) 不管端口是否共享为其它功能,对端口写操作都是针对端口数据寄存器。

7.6.4 端口共享

25个双向I/O端口也能共享作为第二或第三种特殊功能。共享优先级按照外部最高内部最低的规则:

在**引脚配置图**中引脚最外边标注功能享有最高优先级,最里边标注功能享有最低优先级。这意味着一个引脚已经使用较高优先级功能(如果被允许的话),就不能用作较低优先级功能,即使较低优先级功能被允许。只有较高优先级功能由硬件或软件关闭后,相应的引脚才能用作较低优先级功能。上拉电阻也由相同规则控制。

当允许端口复用为其它功能时,用户可以修改PxCR、PxPCR(x=0-5),但在复用的其它功能被禁止前,这些操作不会影响端口状态。

当允许端口复用为其它功能时,任何对端口的读写操作只会影响到数据寄存器的值,端口引脚值保持不变,直到复用的其它功能关闭。

PORTO:

- TK1~8: 触摸按键信道1~8 (P0.0~O0.7)
- SEG0~SEG7: LED SEG 0~7显示输出

Table 7.19 PORT0共享列表

引脚编号	优先级	功能	允许位
	1	Tk1~TK8	POSS中相应位置1
1~4 25~28	2	SEG0~SEG7	SEG01中相应位置1
_3 _0	3	P0.0~0.7	无上述情况

PORT1:

- TXD: EUART数据输出(P1.7)

- T3: 定时器3外部输入(P1.7)

- T4: 定时器4外部输入(P1.0)

- T2EX: 定时器2外部输入(P1.1)

- INT41~INT42: 外部中断输入(P1.5-P1.7)

- RST: 复位引脚 (P1.6)

- TK17~20: 触摸按键信道口(P1.1~P1.4)

- COM1~7: LED COM1~7输出(P1.0~P1.6)

- T2: 定时器2外部输入(P1.5)

- TONE: 音频发生器输出

Table 7.20 PORT1共享列表

引脚编号	优先级	功能	允许位
	1	T4	T4CON寄存器的TR4和T4CLKS位置1(自动上拉)或T4CON寄存器的T4CLKS位清 0且TC4位置1或方式2下TR4位置1
		COM1	LEDCOM中相应位置1
	3	P1.0	以上情况都不符合
	1	T2EX	在0,2,3方式下T2CON寄存器的EXEN2位置1或在方式1下T2CON寄存器的DCEN位置1或在方式1下DCEN位清0及EXEN2位置1(自动拉高)
9	2	TK17	P1SS中相应位置1
	3	COM2	LEDCOM中相应位置1
	4	P1.1	以上情况都不符合
	1	TK18	P1SS中相应位置1
10	2	COM3	LEDCOM中相应位置1
	3	P1.2	以上情况都不符合
	1	TK19	P1SS中相应位置1
11	2	COM4	LEDCOM中相应位置1
	3	P1.3	以上情况都不符合
	1	TK20	P1SS中相应位置1
12	2	COM5	LEDCOM中相应位置1
	3	P1.4	以上情况都不符合
	1	T2	T2CON寄存器(自动上拉)的TR2位及C/T2位置1或C/T2位清0且T2MOD寄存器的T2OE位置1
	2	TONE	TVCR1或者TVCR2 中的TG1EN或者TG2EN位置1
13	3	COM6	LEDCOM中相应位置1
	4	INT40	IEN1寄存器的EX4位和IENC寄存器的EXS40位置1
	5	P1.5	以上情况都不符合
	1	RESET	代码选项
	2	T3	T3CON寄存器的TR3位置1且T3CLKS[1:0] = 01(自动上拉)
14	3	COM7	LEDCOM中相应位置1
	4	INT41	IEN1寄存器的EX4位和IENC寄存器的EXS43-EXS40位置1
	5	P1.6	以上情况都不符合
	1	TXD	对SBUF寄存器写操作
15	2	SCK	ENTWI=1时,对寄存器TWIDAT进行操作
10	3	INT42	IEN1寄存器的EX4位和IENC寄存器的EXS43-EXS40位置1
	4	P1.7	以上情况都不符合

注意: 当P1OS = 60H时,引脚P1.7,P3.0配置为开漏极端口。

PORT2:

- TK8~TK16: 触摸按键信道8~16 (P2.0-P2.7)

- SEG8~15: LED 时作为 SEG 输出

- INT0, 1, 2: 外部中断1, 2输入口

Table 7.21 PORT21共享列表

引脚编号	优先级	功能	允许位
	1	Tk9~TK13	P2SS中相应位置1
20~24	2	SEG8~SEG12	SEG02中相应位置1
	3	P2.0~2.4	无上述情况
	1	TK14	P2SS中相应位置1
19	2	SEG13	SEG02中相应位置1
19	3	INT2	IEN1寄存器的EX2位置1, P2.6输入模式
	4	P2.5	无上述情况
	1	TK15	P2SS中相应位置1
18	2	SEG14	SEG02中相应位置1
10	3	INT1	IEN1寄存器的EX1位置1, P2.6输入模式
	4	P2.6	无上述情况
	1	Tk16	P2SS中相应位置1
17	2	SEG15	SEG02中相应位置1
17	3	INT0	IEN0寄存器中的EX0位置1, P2.7输入模式
	4	P2.7	无上述情况

PORT3:

- RXD: EUART数据输入 (P3.0)

- TWI: SDA引脚

- INT43: 外部中断输入

Table 7.22 PORT3共享列表

16	1	RXD	对SBUF寄存器写操作
	2	SDA	ENTWI=1时,对寄存器TWIDAT进行操作
	3	INT43	IEN1寄存器的EX4位和IENC寄存器的EXS43-EXS40位置1
	4	P3.0	以上情况都不符合

7.7 定时器

7.7.1 特性

- SH79F1622有3个定时器(定时器2,3,4)
- 定时器2兼容标准的8052,且有递增递减计数和可编程输出功能
- 定时器3是16位自动重载定时器, 且可以工作在掉电模式
- 定时器4是16位自动重载定时器,两个数据寄存器TH4和TL4可作为一个16位寄存器来访问

7.7.2 定时器2

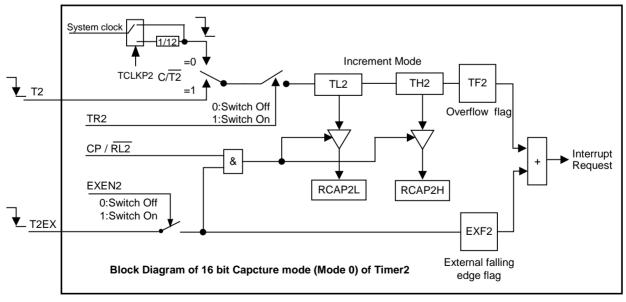
两个数据寄存器(TH2和TL2)串联后可作为一个16位寄存器来访问,由寄存器T2CON和T2MOD控制。设置IEN0寄存器中的ET2位能允许定时器2中断。(详见**中断**章节)

定时器2的C/T2选择系统时钟(定时器)或外部引脚T2(计数器)作为定时器时钟输入。通过所选的引脚设置TR2允许定时器2/计数器2数据寄存器计数。

定时器2方式

定时器2有3种工作方式:捕获/重载,带递增或递减计数器的自动重载方式,可编程时钟输出。P/RL2的组合能选择这些方式。

Table 7.23 定时器2方式选择

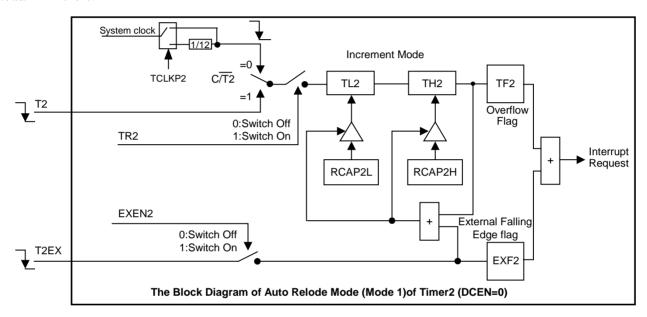

C/T2	T2OE	DCEN	TR2	CP/RL2		方式			
Х	0	Х	1	1	0	16位捕获			
Х	0	0	1	0	1	16位自动重载定时器			
Х	0	1	1	0	'	10世日列里铁足門 奋			
0	1	Χ	1	Х	2	只用于可编程时钟			
1	1	Х	1	Х		不推荐使用			
Х	Х	Х	0	Х	Χ	定时器2停止,T2EX通路仍旧允许			

方式0: 16位捕获

在捕获方式中,T2CON的EXEN2位有两个选项。

如果EXEN2 = 0,定时器2作为16位定时器或计数器,如果ET2被允许的话,定时器2能设置TF2溢出产生一个中断。

如果EXEN2 = 1,定时器2执行相同操作,但是在外部输入T2EX上的下降沿也能引起在TH2和TL2中的当前值分别被捕获到RCAP2H和RCAP2L中,此外,在T2EX上的下降沿也能引起在T2CON中的EXF2被设置。如果ET2被允许,EXF2位也像TF2一样也产生一个中断。


方式1: 16位自动重载定时器

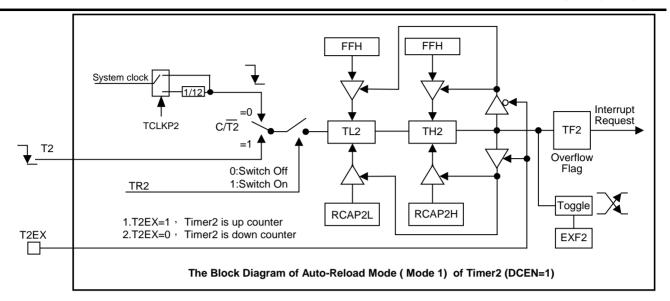
在16位自动重载方式下,定时器2可以被选为递增计数或递减计数。这个功能通过T2MOD中的DCEN位(递减计数允许)选择。系统复位后,DCEN位复位值为0,定时器2默认递增计数。当设置DCEN时,定时器2递增计数或递减计数取决于T2EX引脚上的电平。

当DCEN = 0,通过在T2CON中的EXEN2位选择两个选项。

如果EXEN2 = 0,定时器2递增到0FFFFH,在溢出后置起TF2位,同时定时器自动将用户软件写好的寄存器RCAP2H和RCAP2L的16位值装入TH2和TL2寄存器。

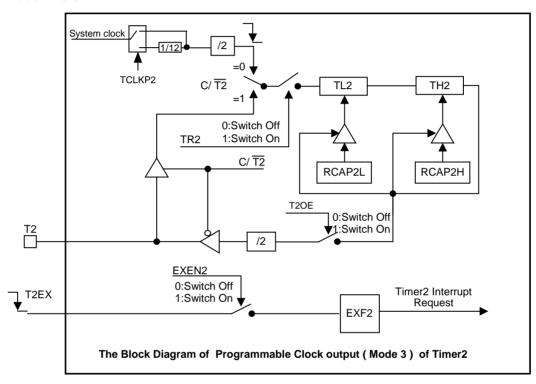
如果EXEN2 = 1, 溢出或在外部输入T2EX上的下降沿都能触发一个16位重载,置起EXF2位。如果ET2被使能,TF2和EXF2位都能产生一个中断。

设置DCEN位允许定时器2递增计数或递减计数。当DCEN = 1时,T2EX引脚控制计数的方向,而EXEN2控制无效。


T2EX置1可使定时器2递增计数。定时器向0FFFFH溢出,然后设置TF2位。溢出也能分别引起RCAP2H和RCAP2L上的16位值重载入定时器寄存器。

T2EX清0可使定时器2递减计数。当TH2和TL2的值等于RCAP2H和RCAP2L的值时,定时器溢出。置起TF2位,同时0FFFFH重载入定时器寄存器。

无论定时器2溢出,EXF2位都被用作结果的第17位。在此工作方式下,EXF2不作为中断标志。


方式2: 可编程时钟输出

T2(P0.5)可以编程输出50%的占空比时钟周期。清C/T2位和置T2OE位,使定时器2作为时钟发生器。TR2位启动和中止定时器。

在这种方式中, T2输出占空比为50%的时钟:

$$Clock \ Out \ Frequency = \frac{1}{2 \times 2} \times \frac{f_{SYS}}{65536 - [RCAP2H, RCAP2L]}$$

定时器2溢出不产生中断。

注意:

- (1) TF2 和 EXF2 都能引起定时器 2 的中断请求,两者有相同的向量地址。
- (2) 当事件发生时或其它任何时间都能由软件设置 TF2 和 EXF2 为 1, 只有软件以及硬件复位才能使之清 0。
- (3) 当 EA = 1 且 ET2 = 1 时,设置 TF2 或 EXF2 为 1 能引起定时器 2 中断。

寄存器

Table 7.24 定时器2控制寄存器

С8Н	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T2CON	TF2	EXF2	-	-	EXEN2	TR2	C/T2	CP/RL2
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	-	-	0	0	0	0

位编号	位符号	说明
7	TF2	定时器2溢出标志位 0: 无溢出(必须由软件清0) 1: 溢出(如果RCLK = 0和TCLK = 0,由硬件设1)
6	EXF2	T2EX引脚外部事件输入(下降沿)被检测到的标志位 0: 无外部事件输入(必须由软件清0) 1: 检测到外部输入(如果EXEN2 = 1,由硬件设1)
3	EXEN2	T2EX引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制位 0: 忽略T2EX引脚上的事件 1: 检测到T2EX引脚上一个下降沿,产生一个捕获或重载
2	TR2	定时器2开始/停止控制位 0: 停止定时器2 1: 开始定时器2
1	C/T2	定时器2定时器/计数器方式选定位 0: 定时器方式,T2引脚用作I/O端口 1: 计数器方式,内部上拉电阻被打开
0	CP/RL2	捕获/重载方式选定位 0: 16位带重载功能的定时器/计数器 1: 16位带捕获功能的定时器/计数器

Table 7.25 定时器2模式控制寄存器

С9Н	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T2MOD	TCLKP2	-	-	-	-	-	T2OE	DCEN
读/写	读/写	-	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	-	-	-	-	-	0	0

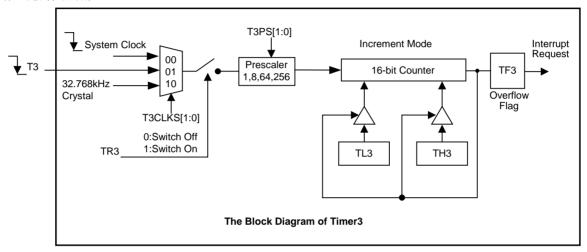
位编号	位符号	说明
7	TCLKP2	分频选择控制位 0:选择系统时钟的1/12作为定时器2的时钟源 1:选择系统时钟作为定时器2的时钟源
1	T2OE	定时器2输出允许位 0: 设置P1.5/T2作为时钟输入或I/O端口 1: 设置P1.5/T2作为时钟输出
0	DCEN	递减计数允许位 0: 禁止定时器2作为递增/递减计数器,定时器2仅作为递增计数器 1: 允许定时器2作为递增/递减计数器

Table 7.26 定时器2重载/捕获和数据寄存器

CAH-CDH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RCAP2L	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明						
7-0	RCAP2L.x	定时器2重载/捕获数据低位高位, x = 0 - 7						
7-0	RCAP2H.x	た円 备2 里 牧/ 拥 狄 数 始 队 世 同 世 , X = U - 7						
7-0	TL2.x	定时器2低位/高位计数器, x = 0 - 7						
/-0	TH2.x							

7.7.3 定时器3


定时器3是16位自动重载定时器,通过两个数据寄存器TH3和TL3访问,由T3CON寄存器控制。IEN1寄存器的ET3位置1允许定时器3中断(详见中断章节)。

定时器3只有一个工作方式: 16位自动重载计数器/定时器,可以设置预分频比,并可以工作在CPU掉电模式。

定时器3有一个16位计数器/定时器寄存器(TH3, TL3)。当TH3和TL3被写时,用作定时器重载寄存器,当被读时,被用做计数寄存器。TR3位置1使定时器3开始递增计数。定时器在0xFFFF到0x00000溢出并置TF3位为1。溢出同时,定时器重载寄存器的16位数据被重新载入计数寄存器中,TH3写操作也导致重载寄存器的数据重新载入计数寄存器。

TH3和TL3读写操作遵循以下顺序:

写操作: 先低位后高位 读操作: 先高位后低位

定时器3可以工作在掉电模式。

当OP_OSC[2:0](详见代码选项章节)为000可以选为00,01。当OP_OSC[2:0]为011时,T3CLKS[1:0]可以选为00,01,10。

如果T3CLKS[1:0]为00,定时器3不能工作在掉电模式下。如果T3CLKS[1:0]为01,T3端口输入外部时钟,定时器3可以工作在普通模式或掉电模式(在系统为高频时进入掉电模式)。当T3CLKS[1:0]为10并且OP_OSC[2:0]011时,定时器3可以工作在普通模式或掉电模式。当T3CLKS[1:0]为10并且OP_OSC[2:0]为000时,定时器3不工作。详见下表:

OP_OSC[2:0]	T3CLKS[1:0]	工作在普通模式	工作在掉电模式	
	00	YES	NO	
000	01	YES	YES	
	10	NO	NO	
	00	YES	NO	
011	01	YES	YES	
	10	YES	YES	

注意:

- 1. 在读或写TH3和TL3时,要确保TR3 = 0。
- 2. 当定时器3用T3端口作为时钟源,而且TR3由0变为1时,定时器3忽略T3的第1个下降沿。

寄存器

Table 7.271 定时器3控制寄存器

C0H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T3CON	TF3	-	T3PS.1	T3PS.0	-	TR3	T3CLKS.1	T3CLKS.0
读/写	读/写	-	读/写	读/写	-	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	-	0	0	-	0	0	0

位编号	位符号	说明
7	TF3	定时器3溢出标志位 0: 无溢出(硬件清0) 1: 溢出(硬件置1)
5-4	T3PS[1:0]	定时器3预分频比选择位 00: 1/1 01: 1/8 10: 1/64 11: 1/256
2	TR3	定时器3允许控制位 0: 停止定时器3 1: 开始定时器3
1-0	T3CLKS[1:0]	定时器3定时器/计数器方式选定位 00: 系统时钟,T3引脚用作I/O端口 01: T3端口输入外部时钟,自动上拉 10: 外部32.768kHz晶体谐振器 11: 保留

Table 7.28 定时器3重载/计数数据寄存器

C4H-C5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TL3(C4H)	TL3.7	TL3.6	TL3.5	TL3.4	TL3.3	TL3.2	TL3.1	TL3.0
TH3(C5H)	TH3.7	TH3.6	TH3.5	TH3.4	TH3.3	TH3.2	TH3.1	TH3.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明					
7-0	TL3.x	定时器3低位高位计数器, x = 0 - 7					
1-0	TH3.x	た円 命 3 似也同位月 奴命, X = U - 7					

7.7.4 定时器4

定时器4是16位自动重载定时器。两个数据寄存器TH4和TL4可作为一个16位寄存器来访问。由T4CON寄存器控制。IEN1寄存器的ET4位置1允许定时器4中断(详见中断章节)。

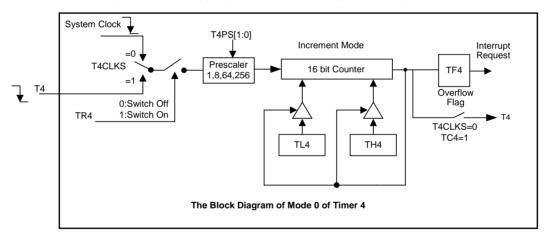
当TH4和TL4被写时,用作定时器重载寄存器,当被读时,被用做计数寄存器。TR4位置1使定时器4开始递增计数。定时器在0xFFFF到0x0000溢出并置TF4位为1。溢出同时,定时器重载寄存器的16位数据重新载入计数寄存器中,对TH4的写操作也导致重载寄存器的数据重新载入计数寄存器。

TH4和TL4读写操作遵循以下顺序:

写操作: 先低位后高位 读操作: 先高位后低位

定时器4方式

定时器4有两种工作方式: 16位自动重载定时器,有T4边沿触发的16位自动重载定时器。这些方式通过T4CON寄存器的T4M[1:0]设置。

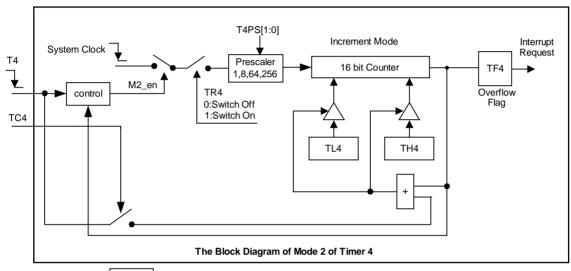

方式0: 16位自动重载定时器

定时器4在方式0为16位自动重载定时器。TH4寄存器存放16位计数器/定时器高8位,TL4存放低8位。当16位定时寄存器从0xFFFF到0x0000递增,并溢出时,系统置定时器溢出标志TF4(T4CON.7)为1,16位寄存器的值被重新载入计数器,如果允许定时器4中断则产生中断。

T4CON.0寄存器的T4CLKS位选择时钟源。当T4CLKS = 1时,定时器4的时钟源为外部时钟,预分频后,计数器数据寄存器增加。当T4CLKS = 0,定时器4的时钟源为系统时钟。

T4CON.1寄存器的TR4位置1允许定时器4,且不清定时器4的计数器。在允许定时器4之前,将希望的初始值写入定时器重载寄存器中。

在比较方式中,T4端口自动被硬件设为输出。定时器4从TH4和TL4预设值开始向0xFFFF计数,当计数器溢出时,T4端口输出反转,同时定时器4中断标志位被置起。在比较方式中,定时器4必须工作在定时方式(T4CLKS = 0)。


方式1: 带边沿触发的16位自动重载定时器

定时器4在方式2为16位自动重载定时器。T4CON.0寄存器的T4CLKS位一直为0,定时器4只能选择系统时钟为时钟源,其余设置与方式0一致。

方式2中,T4CON.1的TR4位置1,定时器4等待T4端口的触发信号(由T4M[1:0]控制上升/下降沿)开始计数,一个触发信号使定时器4开始运行。当定时器4从0xFFFF到0x0000溢出时,TF4(T4CON.7)会被置起,如定时器4的中断使能,将产生定时器4中断。定时器4的时钟为系统时钟。定时器重载寄存器的数据重载入TH4和TL4中,保持到下一个触发信号。

在定时器4工作时同时有一个触发信号时,如果TC4=0,忽略此信号;如果TC4=1,定时器4被触发。

TR4置1不清定时器4的计数器,在允许定时器之前应该把希望的初始化值写入重载寄存器。

control : M2_en set to 1 when T4 edge trig, M2_en set to 0 when counter overflow

注意:

- (1) 当定时器4在波特率发生器方式下作为定时器工作时(TR4=1),TH4或TL4不能读取或写入。 因为定时器在每个状态时间递增,可能导致读取或写入的结果不精确。 因此,在访问TH4/TL4寄存器之前,定时器4必须被关闭(TR4=0)。
- (2) 当定时器4用作计数器时,T4引脚的输入信号频率要小于系统时钟的一半。

寄存器

Table 7.29 定时器4控制寄存器

C2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T4CON	TF4	TC4	T4PS1	T4PS0	T4M1	T4M0	TR4	T4CLKS
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TF4	定时器4溢出标志位 0: 无溢出(硬件清0) 1: 溢出(硬件置1)
6	TC4	比较功能允许位 当T4M[1:0] = 00 0: 禁止定时器4比较功能 1: 允许定时器4比较功能 当T4M[1:0] = 10或11 0: 定时器4不能被再触发 1: 定时器4可以被再触发
5-4	T4PS[1:0]	定时器4预分频比选择位 00: 1/1 01: 1/8 10: 1/64 11: 1/256
3-2	T4M[1:0]	定时器4方式选择位 00: Mode0, 16位自动重载定时器 01: 保留 10: Mode2, T4端口上升沿触发(只用系统时钟, T4CLKS无效) 11: Mode2, T4端口下降沿触发(只用系统时钟, T4CLKS无效)
1	TR4	定时器4允许控制位 0: 禁止定时器4 1: 允许定时器4
0	T4CLKS	定时器4时钟源选择位 0: 系统时钟,T4端口作为I/O口 1: T4端口输入外部时钟,自动上拉

Table 7.30 定时器4重载/计数数据寄存器

D6H-D7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TL4	TL4.7	TL4.6	TL4.5	TL4.4	TL4.3	TL4.2	TL4.1	TL4.0
TH4	TH4.7	TH4.6	TH4.5	TH4.4	TH4.3	TH4.2	TH4.1	TH4.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	TL4.x	定时器4低位高位计数器, x = 0 - 7
7-0	TH4.x	上的 奋4 队也同位 1

7.8 中断

7.8.1 特性

- 9个中断源
- 4层中断优先级

SH79F1622有9个中断源: 4个外部中断(INT0,INT1,INT2,INT4),3个定时器中断(定时器2,3,4),1个EUART中断,TWI中断,TK中断。

7.8.2 中断允许

任何一个中断源均可通过对寄存器IEN0和IEN1中相应的位置1或清0,实现单独使能或禁止。IEN0寄存器中还包含了一个全局使能位EA,它是所有中断的总开关。一般在复位后,所有中断允许位设置为0,所有中断被禁止。

7.8.3 寄存器

Table 7.31 初级中断允许寄存器

A8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN0	EA	-	ET2	ES	-	EX1	TKIE	EX0
读/写	读/写	-	读/写	读/写	-	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	-	0	0	-	0	0	0

位编号	位符号	说明
7	EA	所有中断允许位 0: 禁止所有中断 1: 允许所有中断
5	ET2	定时器2溢出中断允许位 0: 禁止定时器2溢出中断 1: 允许定时器2溢出中断
4	ES	EUART0中断允许位 0:禁止EUART0中断 1:允许EUART0中断
2	EX1	外部中断1允许位 0: 禁止外部中断1 1: 允许外部中断1
1	TKIE	触摸按键中断允许位 0: 禁止触摸按键中断 1: 允许触摸按键中断
0	EX0	外部中断0允许位 0: 禁止外部中断0 1: 允许外部中断0

Table 7.32 次级中断允许寄存器

А9Н	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN1	-	-	-	ET3	ETWI	EX4	EX2	ET4
读/写	-	-	-	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	0	0	0	0	0

位编号	位符号	说明
4	ET3	定时器3溢出中断允许位 0: 禁止定时器3溢出中断 1: 允许定时器3溢出中断
3	ETWI	TWI中断允许位 0:禁止TWI中断 1:允许TWI中断
2	EX4	外部中断4允许位 0: 禁止外部中断4中断 1: 允许外部中断4中断
1	EX2	外部中断2允许位 0: 禁止外部中断2 1: 允许外部中断2
0	ET4	定时器4溢出中断允许位 0: 禁止定时器4溢出中断 1: 允许定时器4溢出中断

注意:

打开外部中断0/1/2/4时,相应的端口必须设置为输入状态。

Table 7.33 外部中断通道允许寄存器

ВАН	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IENC	EXS47	EXS46	EXS45	EXS44	EXS43	EXS42	EXS41	EXS40
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	EXS4x (x=0-7)	外部中断4通道选择位(x=0-7) 0: 禁止外部中断4x 1: 允许外部中断4x

7.8.4 中断标志

每个中断源都有自己的中断标志,当产生中断时,硬件会置起相应的标志位,在中断摘要表中会列出中断标志位。

外部中断源产生外部中断INT0/1/2/4时,如果中断为边沿触发,CPU在响应中断后,各中断标志位IEx(x=0-2,4)被硬件清0;如果中断是低电平触发,外部中断源引脚电平直接控制中断标志,而不是由片上硬件控制。

T2CON寄存器的TF2或EXF2标志位置1时,产生定时器2产生中断,CPU在响应中断后,标志位都不会被硬件自动清0。事实上,中断服务程序必须决定是由TF2或是EXF2产生中断,标志必须由软件清0。

定时器3的计数器溢出时,T3CON寄存器的TF3中断标志位置1,产生**定时器3**中断,CPU在响应中断后,标志被硬件自动清0。

SCON寄存器的标志RI或TI被置1时,产生EUART产生中断,CPU在响应中断后,标志不会被硬件自动清0。事实上,中断服务程序必须判断是收中断还是发中断,标志必须由软件清0。

Table 7.34定时器/计数器控制寄存器 (x = 0, 1)

88H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON	-	-	-	-	IE1	IT1	IE0	IT0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
1, 3	IEx (x = 0, 1)	外部中断x请求标志位 0: 无中断挂起 1: 中断挂起
0, 2	ITx (x = 0, 1)	外部中断x触发方式选择位 0: 低电平触发 1: 下降沿触发

Table 7.35 外部中断标志寄存器

E8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
EXF0	IT4.1	IT4.0	-	-	IT2.1	IT2.0	-	IE2
读/写	读/写	读/写	-	-	读/写	读/写	-	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	-	-	0	0	-	0

位编号	位符号	说明
7-6	IT4[1:0]	外部中断4触发模式位 00: 低电平触发 01: 下降沿触发 10: 上升沿触发 11: 双沿触发 IT4[1:0]控制外部中断4各中断源采用同一触发方式
3-2	IT2[1:0]	外部中断2触发模式位00: 低电平触发01: 下降沿触发10: 上升沿触发11: 双沿触发
0	IE2	外部中断2请求标志位 0: 无中断挂起 1: 中断挂起

Table 7.36 外部中断4标志寄存器

D8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
EXF1	-	-	-	-	IF43	IF42	IF41	IF40
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IF4x (x = 3-0)	外部中断4请求标志 0: 无中断请求 1: 有中断请求 IF4x要由软件清0

7.8.5 中断向量

当一个中断产生时,程序计数器内容被压栈,相应的中断向量地址被载入程序计数器。中断向量的地址在**中断汇总表**中详细列出。

7.8.6 中断优先级

每个中断源都可被单独设置为4个中断优先级之一,分别通过清0或置1 IPL0,IPH0,IPL1,IPH1中相应位来实现。中断优先级服务程序描述如下:

响应一个中断服务程序时,可响应更高优先级的中断,但不能响应同优先级或低优先级的另一个中断。

响应最高级中断服务程序时,不响应其它任何中断。如果不同中断优先级的中断源同时申请中断时,响应较高优先级的中断申请。

如果同优先级的中断源在指令周期开始时同时申请中断,那么内部查询序列确定中断请求响应顺序。

中断优先级						
优势	も位	中断优先级				
IPHx	IPLx	中國ル元級				
0	0	等级0(最低优先级)				
0	1	等级1				
1	0	等级2				
1	1	等级3(最高优先级)				

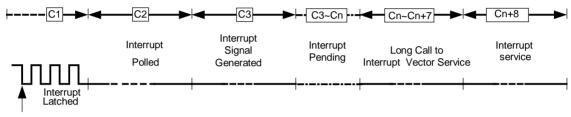
T Table 7.37 中断优先级控制寄存器

B8H, B4H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IPL0(B8H)	-		PT2L	PS0L		PX1L	PTKL	PX0L
IPH0(B4H)	-		PT2H	PS0H		PX1H	PTKH	PX0H
读/写	-		读/写	读/写		读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-		0	0		0	0	0
В9Н, В5Н	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IPL1(B9H)	-	-	-	PT3L	PTWL	PX4L	PX2L	PT4L
IPH1(B5H)	-	-	-	PT3H	PTWH	PX4H	PX2H	PT4H
读/写	-	-	-	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	0	0	0	0	0

位编号	位符号	说明
7-0	PxxxL/H	相应中断源xxx优先级选择

7.8.7 中断处理

中断标志在每个机器周期都会被采样获取。所有中断都在时钟的上升沿被采样。如果一个标志被置起,那么CPU捕获到后中断系统调用一个长转移指令(LCALL)调用其中断服务程序,但由硬件产生的LCALL会被下列任何条件阻止:


同级或更高级的优先级中断在运行中。

当前的周期不是执行中指令的最后一个周期。换言之,正在执行的指令完成前,任何中断请求都得不到响应。

正在执行的是一条RETI或者访问专用寄存器IEN0\1或是IPL\H的指令。换言之,在RETI或者读写IEN0\1或是IPL\H之后,不会马上响应中断请求,而至少在执行一条其它指令之后才会响应。

注意: 因为更改优先级通常需要2条指令,在此期间,建议关闭相应的中断以避免在修改优先级过程中产生中断。如果当模块状态改变而中断标志不再有效时,将不会响应此中断。每一个轮询周期只查询有效的中断请求。

轮询周期/LCALL次序如下图所示:

中断响应时间

由硬件产生的LCALL把程序计数器中的内容压入堆栈(但不保存PSW),然后将相应中断源的向量地址(参照中断向量表) 存入程序计数器。

中断服务程序从指定地址开始,到RETI指令结束。RETI指令通知处理器中断服务程序结束,然后把堆栈顶部两字节弹出,重载入程序计数器中,执行完中断服务程序后程序回到原来停止的地方。RET指令也可以返回到原来地址继续执行,但是中断优先级控制系统仍然认为一个同一优先级的中断被响应,这种情况下,当同一优先级或低优先级中断将不会被响应。

7.8.8 中断响应时间

如果检测出一个中断,这个中断的请求标志位就会在被检测后的每个机器周期被置起。内部电路会保持这个值直到下一个机器周期,CPU会在第三个机器周期产生中断。如果响应有效且条件允许,在下一个指令执行的时候硬件LCALL指令将调用请求中断的服务程序,否则中断被挂起。LCALL指令调用程序需要7个机器周期。因而,从外部中断请求到开始执行中断程序至少需要3+7个完整的机器周期。

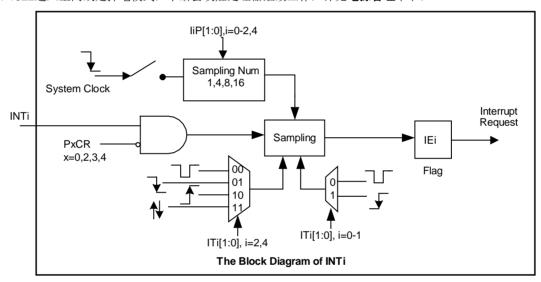
当请求因前述的的三个情况受阻时,中断响应时间会加长。如果同级或更高优先级的中断正在执行,额外的等待时间取决于正执行的中断服务程序的长度。

如果正在执行的指令还没有进行到最后一个周期,假如正在执行RETI指令,则完成正在执行的RETI指令,需要8个周期,加上为完成下一条指令所需的最长时间20个机器周期(如果该指令是16位操作数的DIV,MUL指令),若系统中只有一个中断源,再加上LCALL调用指令7个机器周期,则最长的响应时间是2+8+20+7个机器周期。

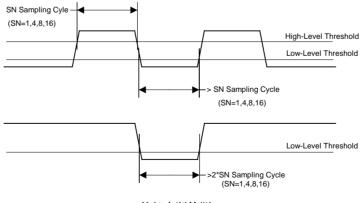
所以,中断响应时间一般大于10个机器周期小于37个机器周期。

7.9.9 外部中断输入

SH79F1622有4个外部中断输入。外部中断0-2分别有一个独立的中断源,外部中断4有4个中断源共享一个中断矢量地址。外部中断0/1可以通过设置TCON寄存器的IT1,IT0位来选择是电平触发或是边沿触发。当ITx=0(x=0,1)时,外部中断INTx(x=0,1)引脚为低电平触发;当ITx(x=0,1)=1,外部中断INTx(x=0,1)为沿触发,在这个模式中,一个采样周期内INTx(x=0,1)引脚上连续采样为高电平,而下个周期开始,连续采样SN个周期为低电平(SN为Sample Num),TCON寄存器的中断请求标志位置1,发出一个中断请求。由于外部中断引脚每个周期采样一次,输入高或低电平应当保持至少SN个周期以确保能够被正确采样到。


如果外部中断为下降沿触发,外部中断源应当将中断脚至少保持SN个周期高电平,然后至少保持SN个周期低电平。这样就确保了边沿能够被检测到以使IEx置1。当调用中断服务程序后,CPU自动将IEx清0。

如果外部中断为低电平触发,外部中断源必须一直保持请求有效,直到产生所请求的中断为止,此过程需要2倍SN个采样周期。如果中断服务完成后而外部中断仍旧维持,则会产生下一次中断。当中断为电平触发时不必清除中断标志IEx(x=0,1,2,4),因为中断只与输入口电平有关。


中断连续采样次数可以设置EXCON寄存器进行调节。

外部中断2,4除了具有更多的中断触发方式外,与外部中断0,1操作类似。

当SH79F1622进入空闲或是掉电模式,中断会唤醒处理器继续工作,详见**电源管理**章节。

注意:外部中断0-2的中断标志位在执行中断服务程序时被自动硬件清0,但外部中断4标志位IF40-43必须要软件清0。

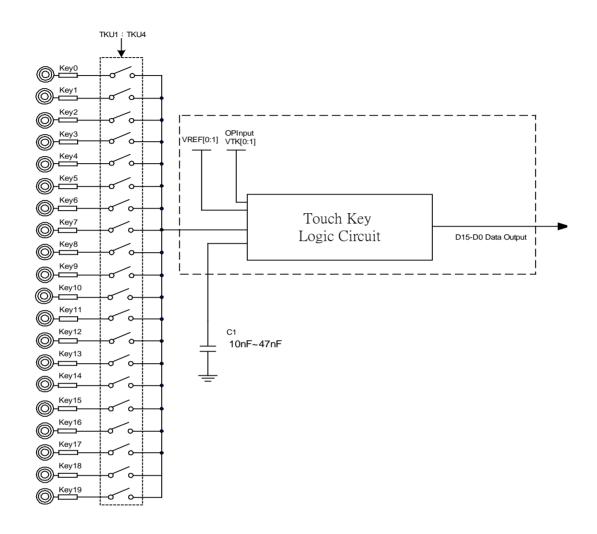
外部中断检测

Table 7.38 外部中断采样次数控制寄存器

ADH-AEH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
EXCON0(ADH)	-	-	I2P1	I2P0	I1P1	I1P0	I0P1	IOP0
EXCON1(AEH)	I43P1	I43P0	I42P1	I42P0	I41P1	I41P0	I40P1	I40P0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IxP[1:0] x=0-3, 41-47	外部中 断INT x连续采样次数选择位 00: 1 01: 4 10: 8 11: 16

注意: 若lxP[1:0]=01,则外部中断x(下降沿触发),连续采样4次低电平才会产生中断标志。


7.8.10 中断汇总

中断源	向量地址	允许位	标志位	轮询优先级	中断号(C51)
Reset	0000H	-	-	0(最高级)	-
INT0	0003H	EX0	IE0	1	0
тк	000BH	TKIE	IFERR+IFGO+IFAVE +IFCOUNT+IFTKOV	2	1
INT1	0013H	EX1	IE1	3	2
EUART	0023H	ES	RI+TI	4	4
Timer2	002BH	ET2	TF2+EXF2	5	5
Timer4	003BH	ET4	TF4	6	7
INT2	0043H	EX2	IE2	7	8
INT4	004BH	EX4+IENC	IF43-40	8	9
TWI	0053H	ETWI	TWINT	9	10
Timer3	005BH	ET3	TF3	10	11

8. 增强功能

8.1 Touch key 触摸按键功能

系统框图

功能描述

SH79F1622内建触摸按键功能模块,最大能连接20个按键。

SH79F1622内建触摸按键功能模块工作电路精简,应用时仅需外接一个Cx电容。Cx电容值选择22nF~44nF之间,要求使用10%或以上精度的涤纶电容、X7R材质电容或NPO材质贴片电容。Cx电容可根据实际电路板材质以及触摸按键介质调节合适的灵敏度,电容值越小,灵敏度越高,电容值越大,灵敏度越低。

触摸按键模块最大能连接20个按键,可通过寄存器TKU1-TKU3来选择,能够选择一轮扫描按键通道个数。

如果不用做触摸按键功能,可通过寄存器设置作为I/O端口或者SEG输出或者COM输出。详见I/O端口章节。

开关电路由寄存器,可通过寄存器FSW1位和FSW0位选择。建议工作频率选择4兆或4兆以下频率。触摸按键模块内建基准电压,可通过寄存器VREF1位和VREF0位选择。

触摸按键通过调整寄存器TUNE1位和TUNE0位来确保对应不同的Cx和工作频率下数据寄存器值的稳定性,

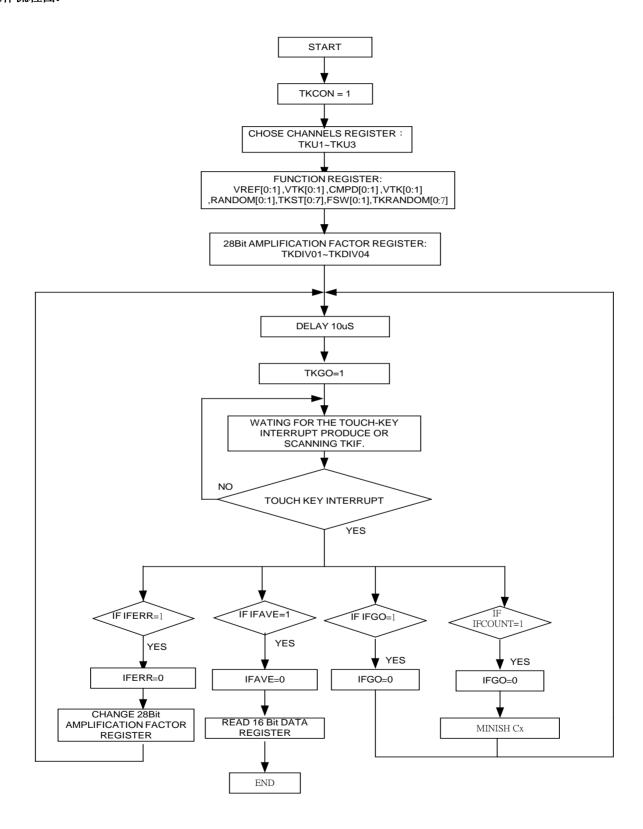
按键采样次数根据实际应用,可选择多次采样,程序只要启动一次采样扫描,硬件会自动执行多次采样的比较值进行平均值后输出结果,例如,选择6次采样输出,寄存器TKGO/DONE位置1,启动按键扫描后,硬件会采样6次按键值,将会将6次的采样值进行比较,去除一个最大值和一个最小值,完成后将剩余四次中值累加的值除以4得到的结果,输出到16位数据寄存器。

28位放大系数寄存器为按键控制器运算结果放大系数,如果运算结果大于16位的数据,即为运算结果高位溢出,标志位IFERR位置1,如果中断允许将响应中断子程序,此时,用户需要将放大系数寄存器的数据值减小后重新启动下一次扫描。一般运算时。16位数据寄存器的值不应大于FFFFH。如果大于FFFFH应将被除数寄存器的数据值减小。

触摸按键有五种情况会产生中断标志位,任何一种情况中断都会产生,系统响应中断,判断中断标志位后执行中断子程序:

- 1. 按键扫描结束后,如未发生异常,将中断标志位IFAVE置1;
- 2. 按键扫描结束后,如运算结果高位溢出,将中断标志位IFERR置1,如果是多次采样,系统将停止当前采样状态等待下一次重新启动扫描,而不执行后面未做完的采样。如果发生运算结果高位溢出中断,用户应将28位放大系数寄存器值减小。
- 3. 按键扫描启动标志位TKGO/DONE1置1,系统自动检测比较输出状态是否正常,如果异常会将标志位IFGO置1,此时为按键控制器启动错误,(通道标志寄存器无效)用户应延时10uS后,重新启动下一次扫描。
- 4. 扫描按键计数过程中,当计数寄存器溢出时,将中断标志位IFCOUNT置1,用户需要减小电容或者减慢开关频率。

仅作触摸按键功能时的启动扫描步骤:


- 1. 选择需要扫描的按键通道:
- 2. 寄存器TKCON位置1,允许触摸按键模块工作;
- 3. 设置开关频率、参考电压Vref和按键采样次数和扫描顺序;
- 4. 设置28位放大系数寄存器;
- 5. 软件延时10uS:
- 6. 寄存器TKGO/DONE位置1, 启动按键扫描:
- 7. 中断产生,TKGO硬件自动清0;
- 8. 中断标志位判断: IFERR, IFGO, IFAVE, IFCOUNT
- 9. 如果IFAVE=1,读数据寄存器500H~527H,程序保存数据结果,执行步骤12; 如果IFERR=1,数据寄存器运算溢出错误,清IFERR标志位,重新设置放大系数寄存器值,减小放大系数值,返 回步骤5重新启动扫描;

如果IFGO=1,按键控制器启动错误,清IFGO标志位,返回步骤5重新启动扫描(通道标志寄存器无效);如果IFCOUNT=1,按键扫描计数溢出错误,清IFCOUNT标志位,减小电容CX或者减慢开关频率。返回步骤5,重新启动扫描。

10. 一组按键扫描完成。

操作流程图:

8.1.1 寄存器

Table 8.1 触摸按键功能控制寄存器

A1H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKCON1	TKCON	-	TKGO/DON	SHARE	MODE	OVDD	FSW1	FSW0
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	-	0	0	0	0	0	0

位编号	位符号	说明
7	TKCON	触摸按键 允许位 0: 禁止触摸按键工作 1: 允许触摸按键工作
5	TKGO/DONE	启动触摸按键允许位 0:未启动按键扫描或按键扫描结束 1:启动按键扫描或正在执行按键扫描
4	SHARE	触摸按键LED共享允许位(详细描述见注3) 0: 禁止共享 1: 启动触摸按键和LED显示共享
3	MODE	触摸按键模式选择位 0:选择充电次数来作为数据参数 1:选择充电时间来作为数据参数
2	OVDD	OP输出VDD允许位 0: 选择OP输出电压 1: 由VDD输出电压
1-0	FSW[1:0]	采样次数选择位 00:按键采样1次输出数据,D15-D0为1次采样的平均值 01:按键采样3次输出数据,D15-D0为1次采样的平均值(去除最大值及最小值) 10:按键采样6次输出数据,D15-D0为4次采样的平均值(去除最大值及最小值) 11:按键采样10次输出数据,D15-D0为8次采样的平均值(去除最大值及最小值)

注: OVDD=0: 由VTK来选择OP输出电压。OVDD=1: 直接由VDD输出电压。

Table 8.2 触摸按键功能频率控制寄存器

111-10 MADELY OF MICHAEL IN 11 HI								
A3H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKST	-	ST.6	ST.5	ST.4	ST.3	ST.2	ST.1	ST.0
读/写	-	读/写						
复位值 (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0

位编号	位符号	说明
6-0	ST[6:0]	触摸按键功能频率控制位 系统时钟/TKST=触摸按键功能开关频率

注: 触摸按键功能频率=OSC/TKST:

TKST最大为127分频,最小为2,当寄存器在小于等于2时,则寄存器默认为系统时钟/2。

Table 8.3 触摸按键频率随机设置寄存器

96H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKRANDOM	TKRADON	TKOFFSET	TKVDD	TKOUT	-	-	RANDOM1	RANDOM1
读/写	读/写	读/写	读/写	读/写	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	-	-	0	0

位编号	位符号	说明
7	TKRADON	触摸按键随机频率使能位 0:禁止触摸按键随机频率功能 1:打开触摸按键随机频率功能
6	TKOFFSET	触摸按键补偿使能位 0: 禁止触摸按键补偿 1: 打开触摸按键补偿
5	TKVDD	触摸按键补偿波形电平选择位 0: 触摸按键补偿波形电平由OP输出 1: 触摸按键补偿波形电平由VDD输出
4	TKOUT	触摸按键补偿波形输出能力选择位 0: 触摸按键补偿波形弱输出 1: 触摸按键补偿波形强输出
1-0	RANDOM[1:0]	随机抖动设置位 TKRADSEL=0 00: TKST随机抖动±1 01: TKST随机抖动±1, ±2 10: TKST随机抖动±1, ±2, ±3 11: TKST随机抖动±1, ±2, ±3, ±4

注意: Design spec: 随机抖动请在一段时间内保证数学累计为0

^{1.}当TKST为二分频时不能进行抖动时钟,三分频时只能选择00有效,四分频时有效选项为00,01两档。当TKST为六分频以上时,TKST随即抖动四档全部有效。

^{2.}当触摸按键补偿位有效。在触摸按键扫描时,除当前TK扫描按键通道外,其它TK扫描按键通道输出补偿波形。 当TKVDD有效时,触摸按键补偿波形电平由VDD提供,当TKVDD为零时,由OP输出补偿波形电平。

Table 8.4 触摸按键中断标志位寄存器(该寄存器只能清0)

A2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKF0	-	IFERR	IFGO	IFAVE	IFCOUNT	IFTKOV	-	-
读/写	-	读/写	读/写	读/写	读/写	读/写	-	-
复位值 (POR/WDT/LVR/PIN)	-	0	0	0	0	0	-	-

位编号	位符号	说明
6	IFERR	运算结果溢出中断标志位 0:运算结果高位未溢出 1:运算结果高位溢出产出中断
5	IFGO	启动信号错误中断标志位 0: 启动信号未错误 1: 启动信号错误产生中断
4	IFAVE	按键扫描结束中断标志位 0: 扫描未结束 1: 扫描结束产生中断
3	IFCOUNT	按键扫描计数溢出标志位 0: 按键扫描计数未溢出 1: 按键扫描计数溢出
2	IFTKOV	SHARE 状态下LED扫描开始时TK尚未完成时错误信号中断标志位 0: TK扫描正常结束,LED正常开始 1: TK扫描时间延长LED扫描推迟,产生中断

Table 8.5 放大系数数寄存器

Table 0.3 放入水	纵纵 时 11 m							
91H~94H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKDIV01(91H)	DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0
TKDIV02(92H)	DIV15	DIV14	DIV13	DIV12	DIV11	DIV10	DIV9	DIV8
TKDIV03(93H)	DIV23	DIV22	DIV21	DIV20	DIV19	DIV18	DIV17	DIV16
TKDIV04(94H)	-	-	-	-	DIV27	DIV26	DIV25	DIV24
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR	0	0	0	0	0	0	0	0

Table 8.6 端口功能控制寄存器

D9H-DBH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0SS(D9H)	P0SS.7	P0SS.6	P0SS.5	P0SS.4	P0SS.3	P0SS.2	P0SS.1	P0SS.0
P1SS(DAH)	-	-	-	P1SS.4	P1SS.3	P1SS.2	P1SS.1	-
P2SS(DBH)	P2SS.7	P2SS.6	P2SS.5	P2SS.4	P2SS.3	P2SS.2	P2SS.1	P2SS.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PxSSy x = 0-5, y = 0-7	端口功能控制 0: 作为I/O 1: 作为触摸按键信道

Table 8.7 触摸按键功能时间控制寄存器

97H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKCOUNT	COUNT0.7	COUNT0.6	COUNT0.5	COUNT0.4	COUNT0.3	COUNT0.2	COUNT0.1	COUNT0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	COUNT0[7:0]	TK时间宽度选择位 TK时钟宽度 =LED时钟频率/TKCOUNT

注意:

TKCOUNT 寄存器仅在SHARE 模式下有效。

*以LED帧频64Hz为例,在LED单独使用时,LED帧频宽度=[1/(SYSTEM CLOCK/8/DISPCLK/DISCOM)]*5* 在SHARE状态下,LED帧频时间分为两部分,即A为触摸按键功能时间以及B为LED扫描时间。

LED时钟频率=系统时钟频率/8/DISPCLK

触摸按键功能时间= LED时钟频频率/TKCOUNT [时间A]

LED COM扫描宽度= LED时钟频频率/DISCOM [时间B]

LED扫描时间(SEG扫描周期)= *(LED时钟频率/TKCOUNT)* [*时间A*]+ *LED时钟频率/DISCOM*5* [*时间B*] 在SHARE状态下,*当OP_OSC[3: 0]为0000时,系统时钟为RC=27MHz,且需要帧频为64Hz: 如果LED时钟频率=27M/8/DISPCLK[096H]*

帧频宽度A+B=64帧=15.625ms

1. 需得到10mS的触摸按键时间宽度:

LED时钟频率/TKCOUNT=100帧=10ms (1/100), LED时钟频率/TKCOUNT[E1H]=100Hz=10ms(1/100)。

2. 需得到8mS的触摸按键时间宽度:

LED时钟频率/TKCOUNT=125帧=8ms (1/125), LED时钟频率/TKCOUNT[B4H]=125Hz=8ms(1/125)。

3. 需得到7mS的触摸按键时间宽度:

LED时钟频率/TKCOUNT=142帧=7ms (1/142), LED时钟频率/TKCOUNT[9EH]=142.40Hz=7.02ms(1/142.5)。

如果单COM扫描宽度为27M /1464/25=655.73Hz=1.525ms,触摸按键时间宽度为8ms

则 扫描帧频=[时间A]+[时间B]=1.525ms*5+8ms=15.625=64Hz

当LED帧频固定时,改变TKCOUNT,即改变触摸接键功能时间[时间A],LED帧频变快,但LED帧频宽度[时间B]不会会增加,如果需要保持帧频不变,需要重新调节LED COM扫描时间。

在实际使用过程中,触摸按键值会随环境温度湿度的变化而变化,需要预留一部分的空闲时间来作为余量,通常为10~15%。

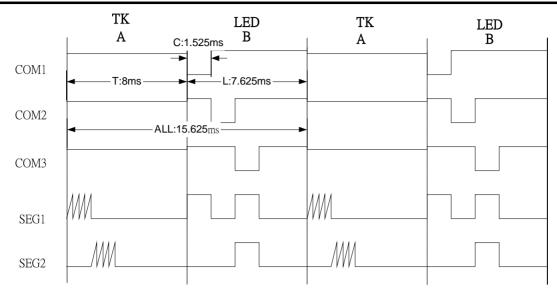
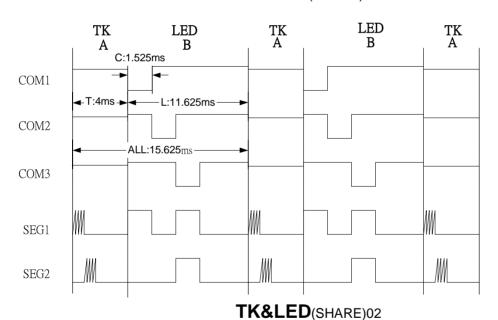


Table 8.8 按键扫描出错寄存器


BDH		第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKW -		-	-	-	TW.4	TW.3	TW.2	TW.1	TW.0
读/写 读/写		读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)		0	0	0	0	0	0	0	0
位编号	1	立符号	•			说明			
4-0	T	W[4:0]	安键扫描出错 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]= 当TKW[4-0]=	E00000b时, E00001b时, E00011b时, E00110b时, E00110b时, E00111b时, E01100b时, E01011b时, E01101b时, E01110b时, E01110b时, E01111b时, E01110b时, E01111b时, E01111b时, E01111b时, E01111b时, E01111b时, E01111b时, E01111b时, E10000b时,	按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按按				

注:当按键有错误标志位置起时,除IFTKOV不会停止触摸按键的运行,其它标志位都会停止触摸按键运行,并将出错的信道的 BIT位置起(IFGO标志位置起时,按键扫描出错寄存器无效)。该寄存器为只读寄存器。

TK&LED(SHARE)01

图中SEG输出触摸按键波形:

ALL宽度为LED帧频宽度,T宽度为触摸按键设置宽度,L宽度为LED扫描宽度,C宽度为LED COM 宽度。ALL(LED帧频) = L(LED扫描宽度)+T(触摸按键时间宽度)

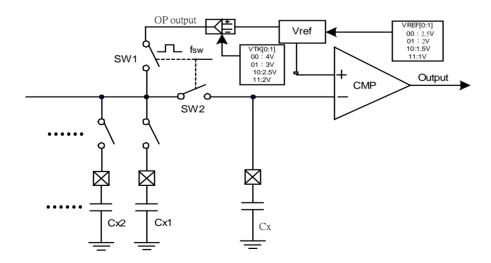

例: 当TK宽度调整为8ms, LED宽度调整为7.625ms, 则显示帧频为64Hz. 当TK宽度调整为4ms, LED宽度调整为11.625ms, 则显示帧频为64Hz.

Table 8.9 基准电压选择寄存器

95H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKVREF	VREF1	VREF0	CMPD1	CMPD0	VTK1	VTK0	TUNE1	TUNE0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	VREF[1:0]	内部基准电压选择位 00: Vref=2.5V 01: Vref=2V 10: Vref=1.5V 11: Vref=1V
5-4	CMPD[1:0]	去抖动时间选择位 00: 约4* tsysclk 01: 约8* tsysclk 10: 约16* tsysclk 11: 约32* tsysclk
3-2	VTK[1:0]	OP输出电压选择位 00: VTK=4V 01: VTK=3.0V 10: VTK=2.5V 11: VTK=2V
1-0	TUNE[1:0]	放电时间调整选择位 00: 延时128* tsysclk 01: 延时256* tsysclk 10: 延时384* tsysclk 11: 延时512* tsysclk

OP输出电压示意图

Table 8.10 按键扫描顺序寄存器

A4H~A6H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TKU1(A4H)	TK8	TK7	TK6	TK5	TK4	TK3	TK2	TK1
TKU2(A5H)	TK16	TK15	TK14	TK13	TK12	TK11	TK10	TK9
TKU3(A6H)	-	-	-	-	TK20	TK19	TK18	TK17
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

注: 当开启share位置1时,TK17~20做为COM输出,扫描按键无效。当TKU1~TKU3中的某位置0时,则当扫描按键开始时,会 跳过该按键扫描信道,扫描按键顺序为从TKU1的TK1到TKU3的TK20,分别代表扫描按键的20个信道。

Table 8.11 16位数据寄存器(触摸按键数据RAM为只读寄存器)

地址		第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
500H	TK01L	D7	D6	D5	D4	D3	D2	D1	D0
501H	TK01H	D15	D14	D13	D12	D11	D10	D9	D8
502H	TK02L	D7	D6	D5	D4	D3	D2	D1	D0
503H	TK02H	D15	D14	D13	D12	D11	D10	D9	D8
504H	TK03L	D7	D6	D5	D4	D3	D2	D1	D0
505H	TK03H	D15	D14	D13	D12	D11	D10	D9	D8
506H	TK04L	D7	D6	D5	D4	D3	D2	D1	D0
507H	TK04H	D15	D14	D13	D12	D11	D10	D9	D8
508H	TK05L	D7	D6	D5	D4	D3	D2	D1	D0
509H	TK05H	D15	D14	D13	D12	D11	D10	D9	D8
50AH	TK06L	D7	D6	D5	D4	D3	D2	D1	D0
50BH	TK06H	D15	D14	D13	D12	D11	D10	D9	D8
50CH	TK07L	D7	D6	D5	D4	D3	D2	D1	D0
50DH	TK07H	D15	D14	D13	D12	D11	D10	D9	D8
50EH	TK08L	D7	D6	D5	D4	D3	D2	D1	D0
50FH	TK08H	D15	D14	D13	D12	D11	D10	D9	D8
510H	TK09L	D7	D6	D5	D4	D3	D2	D1	D0
511H	TK09H	D15	D14	D13	D12	D11	D10	D9	D8
512H	TK010L	D7	D6	D5	D4	D3	D2	D1	D0
513H	TK010H	D15	D14	D13	D12	D11	D10	D9	D8
514H	TK011L	D7	D6	D5	D4	D3	D2	D1	D0
515H	TK011H	D15	D14	D13	D12	D11	D10	D9	D8

续上表

516H	TK012L	D7	D6	D5	D4	D3	D2	D1	D0
517H	TK012H	D15	D14	D13	D12	D11	D10	D9	D8
518H	TK013L	D7	D6	D5	D4	D3	D2	D1	D0
519H	TK013H	D15	D14	D13	D12	D11	D10	D9	D8
51AH	TK014L	D7	D6	D5	D4	D3	D2	D1	D0
51BH	TK014H	D15	D14	D13	D12	D11	D10	D9	D8
51CH	TK015L	D7	D6	D5	D4	D3	D2	D1	D0
51DH	TK015H	D15	D14	D13	D12	D11	D10	D9	D8
51EH	TK016L	D7	D6	D5	D4	D3	D2	D1	D0
51FH	TK016H	D15	D14	D13	D12	D11	D10	D9	D8
520H	TK017L	D7	D6	D5	D4	D3	D2	D1	D0
521H	TK017H	D15	D14	D13	D12	D11	D10	D9	D8
522H	TK018L	D7	D6	D5	D4	D3	D2	D1	D0
523H	TK018H	D15	D14	D13	D12	D11	D10	D9	D8
524H	TK019L	D7	D6	D5	D4	D3	D2	D1	D0
525H	TK019H	D15	D14	D13	D12	D11	D10	D9	D8
526H	TK020L	D7	D6	D5	D4	D3	D2	D1	D0
527H	TK020H	D15	D14	D13	D12	D11	D10	D9	D8

注:

^{1.} OP输出电压为触摸按键供电电压, Vref为触摸按键参考电压源。

^{2.} 触摸按键通过设置寄存器TUNE1和TUNE0位调节电容的放电时间,以确保不同的Cx和工作频率下,数据寄存器值的稳定性。

^{3.} 当LED与触摸按键共享开启时: TK1~TK16作为按键用,P1.1~P1.6因做COM用,TK17~TK20功能无效,触摸按键功能扫描 完成后退出触摸按键模块,开启LED显示模块,需要提前设置COM和SEG 选项。扫描COM1~COM7,SEG0~15内容需要预存, 扫描一次后结束LED功能重新开始触摸按键功能。

8.2 LED驱动器

LED驱动器包含一个控制器,7个COM输出引脚和16egment输出引脚。支持1/4~1/7占空比电压驱动方式。通过DISPSEL位对驱动模式进行选择。控制器由显示数据RAM存储区和一个占空比发生器组成。

LED SEG1-SEG16脚还可以当作I/O口使用。P0SS和P2SS寄存器设置无效,SEG01,SEG02寄存器分别用于控制LED_SEG1-16,COM1 – COM7和I/O端口模式的选择。

在上电复位、引脚复位、低电压复位或看门狗复位期间,LED被关闭。

8.2.1 寄存器

Table 8.12 LED控制寄存器

89H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON	-	LEDON	-	-	-	-	DUTY1	DUTY0
读/写	-	读/写	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	0	-	-	-	-	0	0

位编号	位符号	说明
6	LEDON	LED使能控制位 0:禁止LED驱动器 1:允许LED驱动器
1-0	DUTY[1:0]	占空比选择 00: 1/4占空比 01: 1/5占空比 10: 1/6占空比 11: 1/7占空比

Table 8.13 LED时钟控制寄存器

8CH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCLK	DCK0.7	DCK0.6	DCK0.5	DCK0.4	DCK0.3	DCK0.2	DCK0.1	DCK0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	DCK0[7:0]	LED时钟选择位 LED时钟频率= 系统时钟频率/8/DISPCLK

Table 8.14 COM扫描宽度控制寄存器

9FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISCOM	DCOM.7	DCOM.6	DCOM.5	DCOM.4	DCOM.3	DCOM.2	DCOM.1	DCOM.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	DCOM[7:0]	LED 单COM 扫描宽度选择位 单COM 扫描宽度= LED时钟频率/DISCOM

注意:

LED时钟频率= 系统时钟频率/8/DISPCLK: 系统时钟频率为27M。

单COM扫描宽度= LED时钟频率/DISCOM

当前LED扫描为(5)COM扫描模式。

例如: 当LED为COM1

当OP_OSC[2: 0]为000时,系统时钟为RC=27MHz且需得到64Hz LED的帧,

如果DISPCLK为=27M/150 =096H,实际上,单COM扫描宽度为DISCOM=27M /8/150/320 =0X46H。

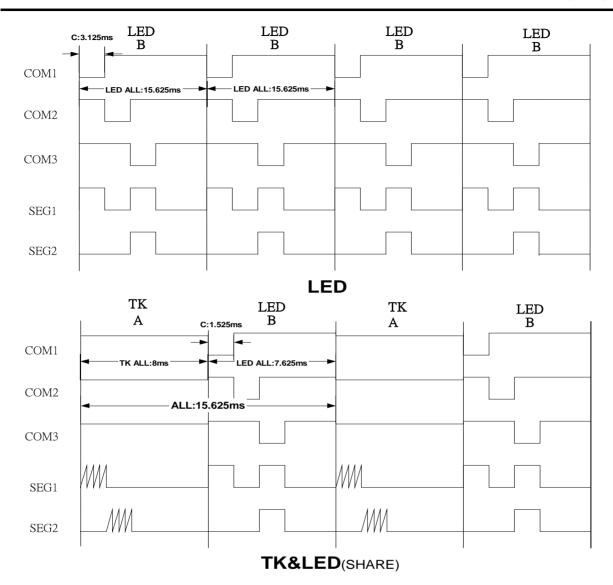
单COM扫描宽度为27M /8/150/70=321Hz=3.115ms

当OP_OSC[2:0]为011时,晶振为32.768KHz且需得到 64Hz LED的帧,

如果DISPCLK=32.768KHz /8= 0X01H,实际上,单COM扫描宽度为DISCOM=32768 /8/1/320 =0X0CH。

单COM扫描宽度为32.768KHz /8/12=341Hz=2.932ms

当触摸按键与LED在SHARE状态下时,以COM1为例:如果触摸按键时间为8ms,即


当OP_OSC[2:0]为000时,系统时钟为RC=27MHz且需得到64Hz LED的帧,(15.625-8)/5=7.625/5=1.525ms=655Hz 如果DISPCLK为=27M/8/150 =096H,实际上,单COM扫描宽度为DISCOM=27M/8/150 /655 =0X22H。

单COM扫描宽度为27M /8/150/34=661Hz=1.515ms

扫描帧频=[时间A]+[时间B]=1.515ms*5+8ms=15.564=64Hz

实际为每个COM的周期。COM在SEG作为触摸按键功能时保持输出OP输出电压。

Table 8.15 SEG模式选择寄存器

8AH~8BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SEG01(8AH)	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
SEG02(8BH)	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SEG[15:0]	P1口模式选择位(x = 0-7) 0: P0.0-P0.7, P2.0~P2.7作为I/O 1: P0.0-P0.7, P2.0~P2.7作为Segment(LED_S0 - LED_S15)

Table 8.16 COM模式选择寄存器

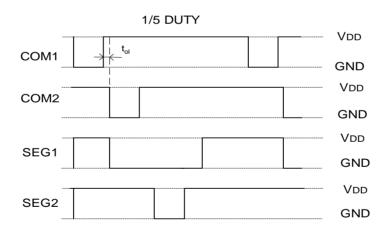
8FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
LEDCOM	-	COM7	COM6	COM5	COM4	COM3	COM2	COM1
读/写	-	读/写						
复位值 (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0

位编号	位符号	说明
6-0	COM[7:1]	P1口模式选择位(x = 0-6) 0: P1.0~P1.6 作为I/O 1: P1.0~P1.6(LED_C1 - LED_C7)

Table 8.17 辉度选择寄存器

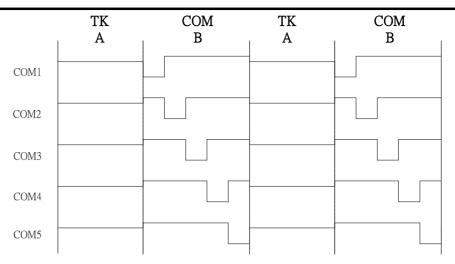
8D H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
LIGHTCOM	-	-	-	-	-	CC3	CC2	CC1
读/写	-	-	-	-	-	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	0	0	0

位编号	位符号	说明					
2-0	CC[3:1]	辉度选择位: 000: COM 宽度100% 001: COM 宽度87.5% 010: COM 宽度75% 011: COM 宽度62.5% 100: COM 宽度50% 101: COM 宽度37.5% 111: COM 宽度25% 111: COM 宽度12.5%					

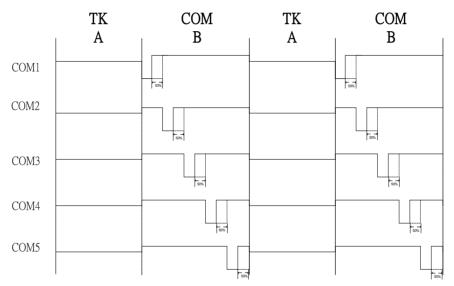


8.2.2 LED RAM配置

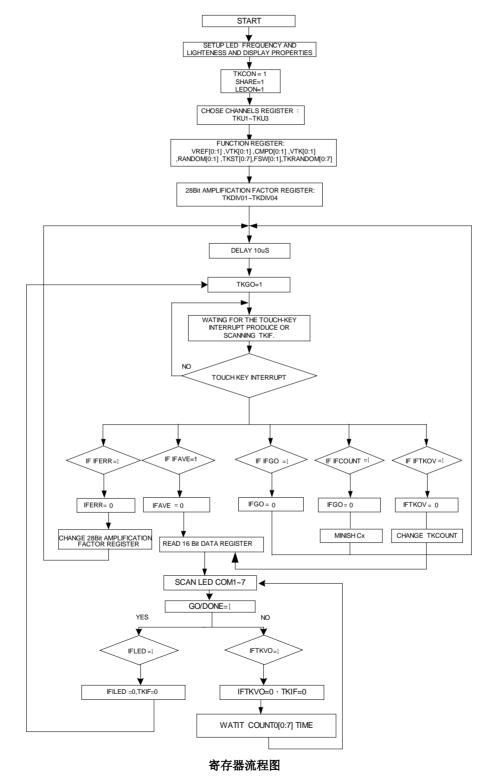
Table 8.18 LED 1/5占空比(LED_C1 -C7,LED_S1 - 16)


地	址	7	6	5	4	3	2	1	0
530H	COM1L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
531H	COM1H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
532H	COM2L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
533H	COM2H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
534H	COM3L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
535H	СОМЗН	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
536H	COM4L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
537H	COM4H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
538H	COM5L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
539H	COM5H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
53AH	COM6L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
53BH	COM6H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
53CH	COM7L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
53DH	COM7H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9

注: 当TKCON1中SHARE位置1,则默认P1.0~P1.6不能为触摸按键信道,只能为COM用。



注意: t_{OL} 为LED Common信号间的重叠时间,取值范围: $20\mu s$ - $40\mu s$ 。


与触摸按键SHARE状态下,CC[3:1]=111时,辉度为100%时的COM波形

与触摸按键SHARE状态下,CC[3:1]=010时,辉度为50%时的COM波形

8.3 Touch key 触摸按键功能与LED 共享功能

8.3.1 功能描述

SH79F1622内建触摸按键功能模块,最大能连接20个按键。当LED SHARE功能开启时,触摸按键功能最大只能连接16个按键,COM1~COM7作为LED功能COM用。需要注意,SHARE 功能开启,在触摸按键功能将数据存数完毕后,将会切换到LED扫描功能,扫描完COM1~COM7后,会自动重新开启触摸按键功能,开始重新一轮的扫描按键及LED。

触摸按键启动扫描步骤:

- 1. LED设置: SEG01~02=0FFH, LEDCOM=7FH, 设置LED显示RAM。
- 2. 设置LED扫描频率和LED显示辉度和占空比。
- 3. 寄存器TKCON位置1,允许触摸按键模块工作。
- **4.** 设置开关频率,参考电压Vref,OP输出电压,按键采样次数,需要扫描的按键顺序,扫描按键时钟宽度,开启touch key &LED share功能: **FSW[0:1]**, **VREF[0:1]**, **CMPD[0:1]**, **VTK[0;1]**, **TKU1~TKU3**, **SHARE=1**, **LEDON=1**.
- 5. 设置28位放大系数寄存器: DIV01~04.
- 6. 软件延时10uS.
- 7. 寄存器TKGO/DONE位置1,启动按键扫描;

程序查询中断标志位,TKGO硬件自动清0. 中断标志位判断: IFERR, IFGO, IFAVE, IFLED, IFTKOV 如果IFAVE=1,读数据寄存器500H~527H,程序保存数据结果,执行步骤9:

如果**IFERR=1**,数据寄存器运算溢出错误,清**IFERR**和标志位,重新设置放大系数寄存器值,减小放大系数值,返回步骤6重新启动扫描:

如果IFGO=1,按键控制器启动错误,清IFGO和标志位,返回步骤7重新启动扫描:

如果**IFCOUNT** 和标志位, 减小电容**CX**或者减少平均次数。返回步骤7,重新启动扫描。

中断产生(如果TKIE=1),或程序查询中断标志位,TKGO硬件自动清0:

8. 触摸按键功能模块:

触摸按键功能扫描完毕,**IFTKOV=0**,在按键时钟宽度时间结束后,执行步骤9; 触摸按键功能扫描未完成,**IFTKOV=1**,在扫描按键结束后执行步骤9;

- 9. LED扫描模块开启:开始扫描COM1~COM7。
- **10.** 程序查询寄存器**TKGO/DONE**位置=0,则触摸按键扫描完成,程序读取RAM中的按键数据进行判断程序判断完毕是否有按键后,判断中断标志位,如果无错误标志位,返回步骤**7**开始下一次循环。

TOUCHKEY的工作模式表

TOUCHKEY 和 LED 按照是否 SHARE,可以分成三种工作模式,如下表所示:

TKCON	LED_ON	SHARE	工作模式
1	0	0	TOUCHKEY 单独工作
1	1	0	TOUCHKEY 和 LED 各单独工作
1	0	1	TOUCHKEY 和 LED 的 SHARE 模式,LED 不工作
1	1	1	TOUCHKEY 和 LED 的 SHARE 模式,LED 工作
0	1	X	LED 单独工作模式
0	0	X	TOUCHKEY 和 LED 都不工作

8.3.2 SEG口的SHARE列表

如下表所示,为 SEG 口的控制信号

TKCON	LED_ON	SHARE	TK_STA 0:TK, 1:LED	PXSS	SEGX	PX
1	Х	0	Х	0	0	普通 IO 口
1	Х	0	Х	0	1	LED □
1	Х	0	Х	1	X	TK □
0	Х	X	X	0	0	普通 IO 口
0	X	X	X	0	1	LED □
0	Х	X	X	1	X	TK □
1	Х	1	0	0	X	普通 IO 口
1	X	1	0	1	X	TK 🏻
1	X	1	1	X	0	普通 IO 口
1	X	1	1	Х	1	LED □

8.4 增强型通用异步收发器(EUART)

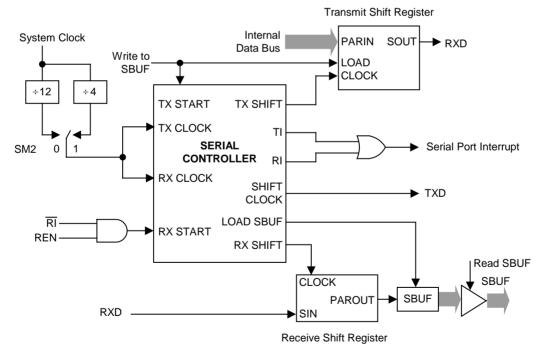
8.4.1特性

- 自带波特率发生器的EUART
- 波特率发生器就是一个15位向上计数器
- 增强功能包括帧出错检测及自动地址识别
- EUART有四种工作方式

8.4.2工作方式

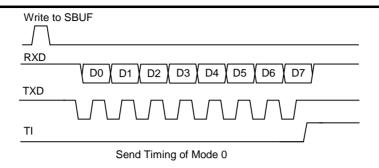
EUART有4种工作方式。在通信之前用户必须先初始化SCON,选择方式和波特率。

在所有四种方式中,任何将SBUF作为目标寄存器的写操作都会启动发送。在方式0中由条件RI = 0和REN = 1初始化接收。这会在TXD引脚上产生一个时钟信号,然后在RXD引脚上移8位数据。在其它方式中由输入的起始位初始化接收(如果RI = 0和REN = 1)。外部发送器通信以发送起始位开始。

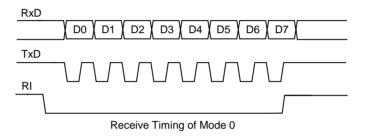

SM0	SM1	方式	类型	波特率	帧长度	起始位	停止位	第9位
0	0	0	同步	f _{SYS} /(4或12)	8位	无	无	无
0	1	1	异步	自带波特率发生器的溢出率/16	10位	1	1	无
1	0	2	异步	f _{SYS} /(32或64)	11位	1	1	0, 1
1	1	3	异步	自带波特率发生器的溢出率/16	11位	1	1	0, 1

方式0: 同步, 半双工通讯

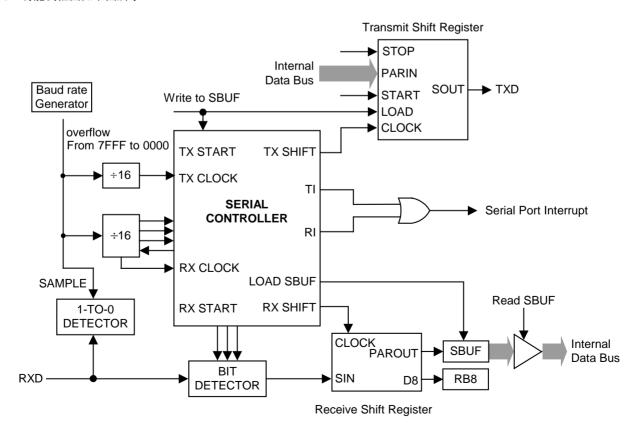
方式0支持与外部设备的同步通信。在RXD引脚上收发串行数据,TXD引脚发送移位时钟。SH79F1622提供TXD引脚上的移位时钟,因此这种方式是串行通信的半双工方式。在这个方式中,每帧收发8位,低位先接收或发送。


通过置SM2位(SCON.5)为0或1,波特率固定为系统时钟的1/12或1/4。当SM2位等于0时,串行端口以系统时钟的1/12运行。当SM2位等于1时,串行端口以系统时钟的1/4运行。与标准8051唯一不同的是,SH79F1622在方式0中有可变波特率。

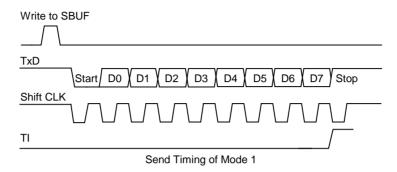
功能块框图如下图所示。数据通过RXD引脚移入和移出串行端口,移位时钟由TXD引脚输出。



任何将SBUF作为目标寄存器的写操作都会启动发送。下一个系统时钟TX控制块开始发送。数据转换发生在移位时钟的下降沿,移位寄存器的内容逐次从左往右移位,空位置0。当移位寄存器中的所有8位都发送后,TX控制模块停止发送操作,然后在下一个系统时钟的上升沿将TI置位(SCON.1)。

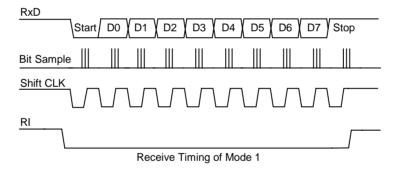


REN (SCON.4) 置1和RI (SCON.0) 清0初始化接收。下一个系统时钟启动接收,在移位时钟的上升沿锁存数据,接收转换寄存器的内容逐次向左移位。当所有8位数据都移到移位寄存器中后,RX控制块停止接收,在下一个系统时钟的上升沿RI置位,直到被软件清零才允许下一次接收。


方式1:8位EUART,可变波特率,异步全双工

方式1提供10位全双工异步通信,10位由一个起始位(逻辑0),8个数据位(低位为第一位)和一个停止位(逻辑1)组成。在接收时,这8个数据位存储在SBUF中而停止位储存在RB8 (SCON.2)中。方式1中的波特率固定为自带波特率发生器溢出率的1/16。功能块框图如下图所示。

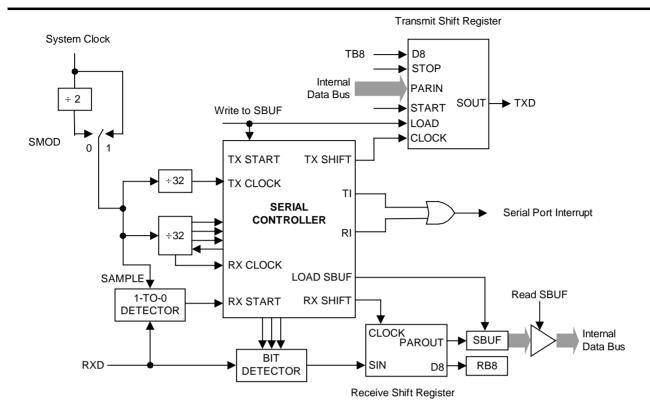
任何将SBUF作为目标寄存器的写操作都会启动发送,实际上发送是从16分频计数器中的下一次跳变之后的系统时钟开始的,因此位时间与16分频计数器是同步的,与对SBUF的写操作不同步。起始位首先在TXD引脚上移出,然后是8位数据位。在发送移位寄存器中的所有8位数据都发送完后,停止位在TXD引脚上移出,在停止位发出的同时TI标志置位。

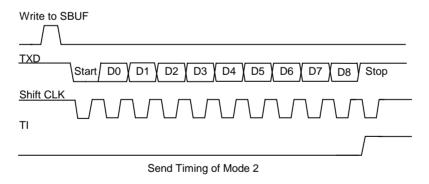


只有REN置位时才允许接收。当RXD引脚检测到下降沿时串行口开始接收串行数据。为此,CPU对RXD不断采样,采样速率为波特率的16倍。当检测下降沿时,16分频计数器立即复位,这有助于16分频计数器与RXD引脚上的串行数据位同步。16分频计数器把每一位的时间分为16个状态,在第7、8、9状态时,位检测器对RXD端的电平进行采样。为抑制噪声,在这3个状态采样中至少有2次采样值一致数据才被接收。如果所接收的第一位不是0,说明这位不是一帧数据的起始位,该位被忽略,接收电路被复位,等待RXD引脚上另一个下降沿的到来。若起始位有效,则移入移位寄存器,并接着移入其它位到移位寄存器。8个数据位和1个停止位移入之后,移位寄存器的内容被分别装入SBUF和RB8中,RI置位,但必须满足下列条件:

1. RI=0

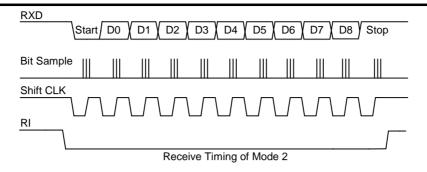
2. SM2 = 0或者接收的停止位= 1


如果这些条件被满足,那么停止位装入RB8,8个数据位装入SBUF,RI被置位。否则接收的帧会丢失。这时,接收器将重新去探测RXD端是否另一个下降沿。用户必须用软件清零RI,然后才能再次接收。


方式2:9位EUART,固定波特率,异步全双工

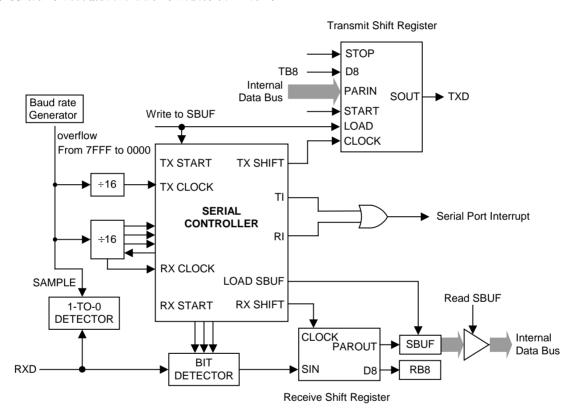
这个方式使用异步全双工通信中的11位。一帧由一个起始位(逻辑0),8个数据位(低位为第一位),一个可编程的第9数据位和一个停止位(逻辑1)组成。方式2支持多机通信和硬件地址识别(详见**多机通讯**章节)。在数据传送时,第9数据位(SCON中的TB8)可以写0或1,例如,可写入PSW中的奇偶位P,或用作多机通信中的数据/地址标志位。当接收到数据时,第9数据位移入RB8而停止位不保存。PCON中的SMOD位选择波特率为系统工作频率的1/32或1/64。功能块框图如下所示。

任何将SBUF作为目标寄存器的写操作都会启动发送,同时也将TB8载入到发送移位寄存器的第9位中。实际上发送是从16分频计数器中的下一次跳变之后的系统时钟开始的,因此位时间与16分频计数器是同步的,与对SBUF的写操作不同步。起始位首先在TXD引脚上移出,然后是9位数据。在发送转换寄存器中的所有9位数据都发送完后,停止位在TXD引脚上移出,在停止位开始发送时TI标志置位。

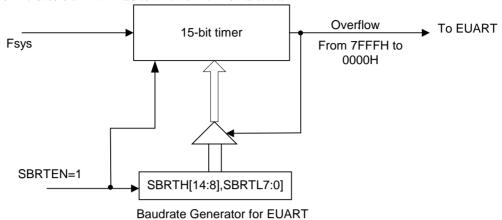


只有REN置位时才允许接收。当RXD引脚检测到下降沿时串行口开始接收串行数据。为此,CPU对RXD不断采样,采样速率为波特率的16倍。当检测下降沿时,16分频计数器立即复位。这有助于16分频计数器与RXD引脚上的串行数据位同步。16分频计数器把每一位的时间分为16个状态,在第7、8、9状态时,位检测器对RXD端的电平进行采样。为抑制噪声,在这3个状态采样中至少有2次采样值一致数据才被接收。如果所接收的第一位不是0,说明这位不是一帧数据的起始位,该位被忽略,接收电路被复位,等待RXD引脚上另一个下降沿的到来。若起始位有效,则移入移位寄存器,并接着移入其它位到移位寄存器。9个数据位和1个停止位移入之后,移位寄存器的内容被分别装入SBUF和RB8中,RI置位,但必须满足下列条件:

1. RI=0


2. SM2 = 0或者接收的第9位= 1,且接收的字节符合约定从机地址 如果这些条件被满足,那么第9位移入RB8,8位数据移入SBUF,RI被置位。否则接收的数据帧会丢失。 在停止位的当中,接收器回到寻找RXD引脚上的另一个下降沿。用户必须用软件清除RI,然后才能再次接收。

方式3:9位EUART,可变波特率,异步全双工


方式3使用方式2的传输协议以及方式1的波特率产生方式。

8.4.3可微调波特率

EUART自带一个波特率发生器,它实质上就是一个15位递增计数器。

由图得到,波特率发生器的溢出率为
$$SBRToverflowrate = \frac{Fsys}{32768 - SBRT}$$
, $SBRT = [SBRTH, SBRTL]$

因此,EUART在各模式下的波特率计算公式如下。

在方式0中,波特率可编程为系统时钟的1/12或1/4,由SM2位决定。当SM2为0时,串行端口在系统时钟的1/12下运行。当SM2为1时,串行端口在系统时钟的1/4下运行。

在方式1和方式3中,波特率可微调,精度为一个系统时钟,公式如下:

$$BaudRate = \frac{Fsys}{16 \times (32768 - SBRT) + BFINE}$$

例如: Fsys = 8MHz, 需要得到115200Hz的波特率, SBRT和SFINE值计算方法如下:

8000000/16/115200 = 4.34

SBRT = 32768 - 4 = 32764

 $115200 = 8000000/(16 \times 4 + BFINE)$

BFINE = 5.4 ≈ 5

此微调方式计算出的实际波特率为115942,误差为0.64%;以往方式计算出的波特率误差为8.5%。

在方式2中,波特率固定为系统时钟的1/32或1/64,由SMOD位(PCON.7)中决定。当SMOD位为0时,EUART以系统时钟的1/64运行。当SMOD位为1时,EUART以系统时钟的1/32运行。

$$BaudRate = 2^{SMOD} \times (\frac{f_{SYS}}{64})$$

8.4.4 多机通讯

软件地址识别

方式2和方式3具有适用于多机通讯功能。在这两个方式下,接收的是9位数据,第9位移入RB8中,之后是停止位。可以这样设定EUART: 当接收到停止位,且RB8 = 1时,串行口中断有效(请求标志RI置位)。此时置位SCON寄存器的SM2,EUART工作在多机通讯模式。

在多机通讯系统中,按如下所述来使用这一功能。当主机要发送一数据块给几个从机中的一个时,先发送一地址字节,以寻址目标从机。地址字节与数据字节可用第9数据位来区别,地址字节的第9位为1,数据字节的第9位为0。

如果从机SM2为1,则不会响应数据字节中断。地址字节可以使所有从机产生中断,每一个从机都检查所接收到的地址字节,以判别本机是不是目标从机。被寻到的从机对SM2位执行清零操作,并准备接收即将到来的数据字节。当接收完毕时,从机再一次将SM2置位。没有被寻址的从机,则保持SM2位为1,不响应数据字节。

注意:

在方式0中,SM2用来2倍频波特率。在方式1中,SM2用来检测停止位是否有效,如果SM2=1,接收中断不会响应直到接收到一个有效的停止位。

自动 (硬件) 地址识别

在方式2和方式3中,SM2置位,EUART运行状态如下:接收到停止位,RB8的第9位为1(地址字节),且接收到的数据字节符合EUART的从机地址,EUART产生一个中断。从机将SM2清零,接收后续数据字节。

第9位为1表明该字节是地址而非数据。当主机要发送一组数据给几个从机中的一个时,必须先发送目标从机地址。所有从机等待接收地址字节,为了确保仅在接收地址字节时产生中断,SM2位必须置位。自动地址识别的特点是只有地址匹配的从机才能产生中断,硬件完成地址比较。

中断产生后,地址匹配的从机清零SM2,继续接收数据字节。地址不匹配的从机不受影响,将继续等待接收和它匹配的地址字节。全部信息接收完毕后,地址匹配的从机应该再次把SM2置位,忽略所有传送的非地址字节,直到接收到下一个地址字节。

使用自动地址识别功能时,主机可以通过调用给定的从机地址选择与一个或多个从机通信。主机使用广播地址可以寻址所有从机。有两个特殊功能寄存器,从机地址(SADDR)和地址屏蔽(SADEN)。从机地址是一个8位的字节,存于SADDR寄存器中。SADEN用于定义SADDR各位的有效与否,如果SADEN中某一位为0,则SADDR中相应位被忽略,如果SADEN中某一位置位,则SADDR中相应位将用于产生约定地址。这可以使用户在不改变SADDR寄存器中的从机地址的情况下灵活地寻址多个从机。

	从机1	从机2
SADDR	10100100	10100111
SADEN (为0的位被忽略)	11111010	11111001
约定地址	10100x0x	10100xx1
广播地址 (SADDR 或SADEN)	1111111x	11111111

从机1和从机2的约定地址最低位是不同的。从机1忽略了最低位,而从机2的最低位是1。因此只与从机1通讯时,主机必须发送最低位为0的地址(10100000)。类似地,从机1的第1位为0,从机2的第1位被忽略。因此,只与从机2通讯时,主机必须发送第1位为1的地址(10100011)。如果主机需要同时与两从机通讯,则第0位为1,第1位为0,第2位被两从机都忽略,两个不同的地址用于选定两个从机(1010 0001和1010 0101)。

主机可以通过广播地址与所有从机同时通讯。这个地址等于SADDR和SADEN的位或,结果中的0表示该位被忽略。多数情况下,广播地址为0xFFh,该地址可被所有从机应答。

系统复位后,SADDR和SADEN两个寄存器初始化为0,这两个结果设定了约定地址和广播地址为XXXXXXXX (所有位都被忽略)。这有效地去除了多从机通讯的特性,禁止了自动寻址方式。这样的EUART将对任何地址都产生应答,兼容了不支持自动地址识别的8051控制器。用户可以按照上面提到的方法实现软件地址识别的多机通讯。

帧出错检测

当寄存器PCON中的SSTAT位为逻辑1时,帧出错检测功能才有效。3个错误标志位被置位后,只能通过软件清零,尽管后续接收的帧没有任何错误也不会自动清零。

注意:

SSTAT位必须为逻辑1是访问状态位(FE, RXOV和TXCOL), SSTAT位为逻辑0时是访问方式选择位(SMO, SM1和SM2)。

发送冲突

如果在一个发送正在进行时,用户软件写数据到SBUF寄存器时,发送冲突位(SCON寄存器中的TXCOL位)置位。如果发生了冲突,新数据会被忽略,不能被写入发送缓冲器。

接收溢出

如果在接收缓冲器中的数据未被读取之前,RI清零,又有新的数据存入接收缓冲器,那么接收溢出位(SCON寄存器中的RXOV位)置位。如果发生了接收溢出,接收缓冲器中原来的数据将丢失。

帧出错

如果检测到一个无效(低)停止位,那么帧出错位(寄存器SCON中的FE)置位。

注意:

在发送之前TXD引脚必须被设置为输出高电平。

8.4.5寄存器

Table 8.19 电源控制寄存器

87H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
读/写	读/写	读/写	-	•	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	-	ı	0	0	0	0

位编号	位符号	说明
7	SMOD	波特率加倍器 0:在方式2中,波特率为系统时钟的1/64 1:在方式2中,波特率为系统时钟的1/32
6	SSTAT	SCON [7:5]功能选择 0: SCON [7:5]工作方式作为SM0,SM1,SM2 1: SCON [7:5]工作方式作为FE,RXOV,TXCOL
3-2	GF[1:0]	用于软件的通用标志位
1	PD	掉电模式控制位
0	IDL	空闲模式控制位

Table 8.20 EUART控制及状态寄存器

98H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCON	SM0/FE	SM1/RXOV	SM2/TXCOL	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	SM[0:1]	EUART串行方式控制位,SSTAT = 0 00: 方式0, 同步方式, 固定波特率 01: 方式1, 8位异步方式, 可变波特率 10: 方式2, 9位异步方式, 固定波特率 11: 方式3, 9位异步方式, 可变波特率
7	FE	EUART帧出错标志位,当FE位被读时,SSTAT位必须被置位 0: 无帧出错,由软件清零 1: 帧出错,由硬件置位
6	RXOV	EUART接收溢出标志位,当RXOV 位被读时,SSTAT 位必须被置位 0:无接收溢出,由软件清零 1:接收溢出,由硬件置位
5	SM2	EUART多处理机通讯允许位(第9位"1"校验器),SSTAT = 0 0:在方式0下,波特率是系统时钟的1/12 在方式1下,禁止停止位确认检验,任何停止位都会置位RI 在方式2和3下,任何字节都会置位RI 1:在方式0下,波特率是系统时钟的1/4 在方式1下,允许停止位确认检验,只有有效的停止位(1)才能置位RI 在方式2和3下,只有地址字节(第9位=1)才能置位RI
5	TXCOL	EUART发送冲突标志位,当TXCOL位被读时,SSTAT位必须被置位 0: 无发送冲突,由软件清零 1: 发送冲突,由硬件置位
4	REN	EUART接收器允许位 0:接收禁止 1:接收允许
3	TB8	在EUART的方式2和3下发送的第9位,由软件置位或清零
2	RB8	在EUART的方式1,2和3下接收数据的第9位

		在方式0下,不使用RB8 在方式1下,如果接收中断发生,停止位移入RB8 在方式2和3下,接收第9位
1	TI	EUART的传送中断标志位 0: 由软件清零 1: 由硬件置位
0	RI	EUART的接收中断标志位 0: 由软件清零 1: 由硬件清零

Table 8.21 EUART数据缓冲器寄存器

99H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SBUF	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SBUF[7:0]	这个寄存器寻址两个寄存器:一个移位寄存器和一个接收锁存寄存器 SBUF的写入将发送字节到移位寄存器中,然后开始传输 SBUF的读取返回接收锁存器中的内容

Table 8.22 EUART从机地址及地址屏蔽寄存器

9AH-9BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SADDR(9AH)	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
SADEN(9BH)	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SADDR[7:0]	寄存器SADDR定义了EUART的从机地址
7-0	SADEN[7:0]	寄存器SADEN是一个位屏蔽寄存器,决定SADDR的哪些位被检验 0: SADDR中的相应位被忽略 1: SADDR中的相应位对照接收到的地址被检验

Table 8.23 EUART波特率发生器寄存器

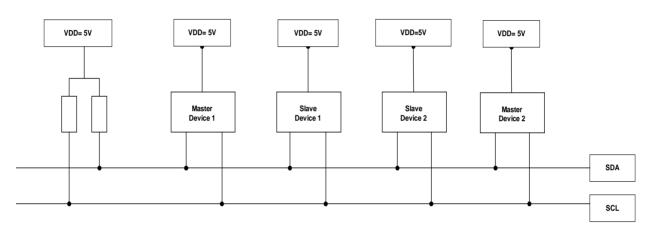
9CH-9DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SBRTH(9CH)	SBRTEN	SBRT.14	SBRT.13	SBRT.12	SBRT.11	SBRT.10	SBRT.9	SBRT.8
SBRTL(9DH)	SBRT.7	SBRT.6	SBRT.5	SBRT.4	SBRT.3	SBRT.2	SBRT.1	SBRT.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	SBRTEN	EUART波特率发生器使能控制位 0: 关闭(默认) 1: 打开
6-0 7-0	SBRT[14:0]	EUART波特率发生器计数器高7位和低8位寄存器

Table 8.24 EUART波特率发生器微调寄存器

9EH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SFINE	-	-	-	-	SFINE.3	SFINE.2	SFINE.1	SFINE.0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	1	1	0	0	0	0

位编号	位符号	说明
3-0	SFINE[3:0]	EUART波特率发生器微调数据寄存器


8.5 TWI 串行通讯接口

8.5.1 特件

- 两线模式,简单快捷
- 支持主机模式(Master)和从机模式(Slave)
- 允许发送数据(Transmitter)和接收数据(Receiver)
- 支持多主机通讯的仲裁功能
- 具有低电平总线超时判断(Timeout)
- 空闲模式下可唤醒系统
- 地址可编程

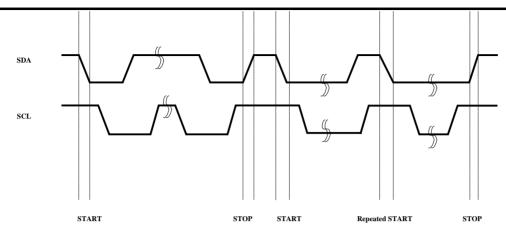
TWI串行总线采用两根线(SDA和SCL)在总线和装置之间传递信息。SH79F1622完全符合TWI总线规范,自动对字节进行传输进行处理,并对串行通讯进行跟踪。

TWI功能需要27MHz系统频率,当前系统周期为32.768KHz时,OSC2 27MRC不能关闭,否则TWI无法通讯。 典型TWI通讯如下图所示,最高支持128个不同的器件进行通讯。

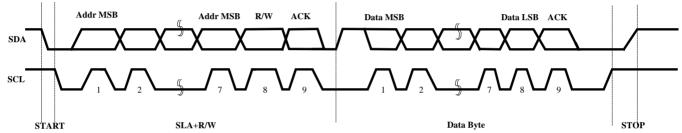
8.5.2 数据传输格式

数据传输格式

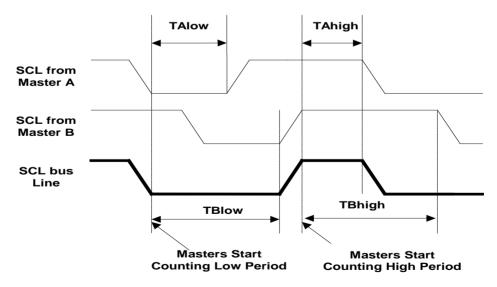
数据传输中数据线上每一位的传输均需要时钟线上一个脉冲。在时钟高电平时数据线应保持稳定。但发送起始条件和终止条件时不需要遵守此规则。


和I2C通讯协议相似,TWI定义了两个特殊的波形:起始条件和终止条件。在时钟线为高电平时数据线的下降沿定义为起始条件;在时钟线为高电平时数据线的上升沿定义为终止条件。起始条件和终止条件均由主机发出。

主机可以发起和终结一次传输。当主机发送一个起始条件时开始一次传输,发送一个终止条件时结束本次传输。在起始条件和终止条件之间,总线定义为"忙碌"状态。其它主机不应该去试图发起传输。在"忙碌"状态下,如果主机再次发送起始条件,则定义为"重复起始条件",表示主机希望不放弃总线的情况下开始一次新的传输。发送重复起始条件后,总线仍处于"忙碌"状态,一直到总线出现终止条件。鉴于重复起始条件和起始条件性质完全一致,除非特别声明,本文中将采用起始条件来代替两者。


所有数据包(包括地址包)均有9位组成,包括1个字节和一个应答位。主机负责发出时钟和起始及终止条件,接收者负责给出应答信号。接收者通过在第九个时钟脉冲处将数据线拉低发出"应答(ACK)"信号;或维持第九个脉冲处维持高电平表示"不应答(NACK)"信号。当接收方接收到最后一个字节,或因某种原因无法继续接收数据时,应回应"不应答(NACK)"信号。TWI采用从高到低逐位进行传输。

一次传输通常包括一个起始条件,地址+读/写,一个或多个数据包和一个终止条件。仅包含起始条件和终止条件的数据格式是不合通讯规则的。值得注意的是"线与"结构给主机和从机之间的握手信号提供了方便。当主机相对太快或从机需要处理其它事务时,从机可以通过拉低时钟线来拉长时钟线的低电平时间,从而降低通讯频率。从机可以拉长时钟线低电平周期但不会影响到时钟线高电平的周期。


在产生应答信号时,SH79F1622拉低SDA信号线。中断标志位置起期间,SH79F1622拉低SCL信号线,释放SDA信号线。中断处理完毕后清除TWINT标志,释放SCL信号线。

时钟同步

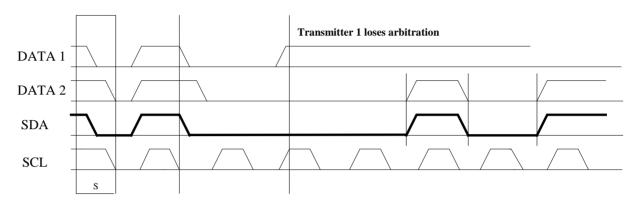
当多个主机同时希望控制总线时,总线将依据"线与"原则决定时钟线高低电平。对于所有参与传输的主机来说,定义清楚每一个时钟脉冲的起始是相当重要的。

时钟线电平的由高到低跳变将导致所有参与传输的器件开始低电平计时。每一个器件计时达到自己低电平要求时释放时钟 线,在时钟线变为高电平之前进入高电平等待期;当所有器件均计满低电平周期时,时钟线才变为高电平。之后所有器件开始 对高电平进行计时,第一个计满高电平周期的器件将拉低时钟线,进入下一个时钟周期。

数据仲裁

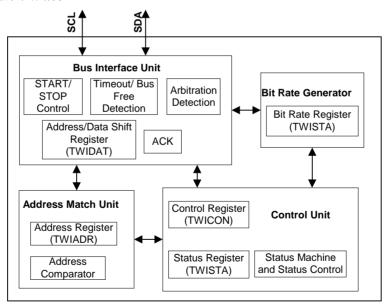
主机只有在总线处于"空闲"状态时才能开始一次传输。两个或多个主机可能在最小保持时间(t_{HOLD:STA}))内同时发送起始条件,从而在总线上只看到一个起始条件。

由于发送起始条件的主机无法知道是否有其它主机在竞争总线,只能靠时钟高电平时对数据线的仲裁判断哪个主机占用总线。当有主机传输低电平时,传输高电平的主机将失去仲裁,必须放弃总线。



失去仲裁的主机将继续发送时钟,直到当前传输字节发送完毕。当两个主机同时访问一个从机时,可能会顺利通过地址阶段,在传输数据时将继续进行仲裁。这种机制要求所有TWI器件在进行数据传输时可以检测数据线上的真实状态。

如果该主机同时开启了从机模式,在发送地址阶段失去仲裁后应检测线上的地址是否与自己相匹配;如果是对自己的访问,应立即切换到从机模式,接收信息。


每次传输中,仍要检测线上的"重复起始条件",当检测到并非自己发出的"重复起始条件"时,应立即退出当前传输。 仲裁不应发生在如下情况:

- 1. 重复起始条件和数据
- 2. 终止条件和数据
- 3. 重复起始条件和终止条件

8.5.3 功能描述

下图描述了TWI通讯模块的详细结构。

总线接口单元

总线接口单元包括数据和地址移位寄存器(TWIDAT),开始/终止条件控制器,仲裁和总线超时检测单元。

寄存器TWIDAT存储了即将发送的数据或地址和接收到的数据和地址。

开始/终止条件控制器负责发送和检测总线上的开始条件,重复开始条件和终止条件。

如果SH79F1622已经作为主机开始一次传输,仲裁单元将始终检测是否有仲裁发生。当失去仲裁时,控制单元可以进行合适的动作,并产生相应的状态码。

SH79F1622在传输数据/地址时,必须在SCL由低跳高前维持数据稳定。

SH79F1622在传输ACK/NACK时,在SCL由低跳高后产生TWINT中断,并在SCL由高跳低时拉低SCL,在TWINT中断清零时释放SCL。

SH79F1622在传输ACK/NACK信号时,若TWINT已被清零,SCL仍为高电平时,SDA产生跳变,则重新产生TWINT中断,状态为00H。SH79F1622当前通讯终止,该状态与普通00H状态处理一致。

SH79F1622在传输ACK/NACK信号时,若TWINT未被清零,SCL仍为高电平时,SDA产生跳变,则状态直接切换到00H,不会再次产生中断。SH79F1622作为从机进入该状态,则当前通讯终止,可发生STA开始主机传输,或重新接受STA+ADR对自己地址的访问。SH79F1622作为主机进入该状态,则当前通讯终止,可发生STA开始主机传输,或重新接受STA+ADR对自己的访问。

SH79F1622在当前通讯终止后,不会再参与当前传输。SH79F1622若作为主机存在,请开启EFREE功能,防止进入逻辑死区。

SH79F1622规定总线维持为高电平超过50us时为"空闲"状态,释放总线。该功能仅适用于一个数据包传输过程中(8+1个位)。SH79F1622处于从机发送模式,且所传输的第一个字节为低电平时适用该功能。起始条件(STA、RSTA)不适用于该功能。SH79F1622产生中断,寄存器TWICON中的TFREE会被置位(如果控制位EFREE已置位)。

如果时钟线SCL被从机拉低时,通讯会暂时中止;而主机也没有办法将时钟线拉高。为解决此问题,TWI协议规定参与传输的所有器件将时钟线低电平超过25ms时定义为"总线超时",寄存器TWICON中的TOUT会被置位(如果控制位ETOT已置位)。10ms内TWI模块将复位,释放总线。

频率生成单元

在主机模式下,可通过寄存器TWICON的CR[1:0]来设定通讯频率。通讯频率共有四个: 4KHz、16KHz、64KHz、100KHz(4MHz 时钟源)。

地址匹配单元

地址匹配单元检验所收到的地址是否与寄存器TWIADR中的7位地址相匹配。如果通用地址使能位GC被置位,也将检测是否与通用地址00H相匹配。当地址匹配时,控制单元将产生合适的动作及相应的状态码。

控制单元

控制单元监视TWI总线,并依据控制寄存器TWICON的设置进行相应的回应。当TWI总线有需要应用层注意的事件时,TWI中断标志被置起,标明当前事件的状态码会被写入状态寄存器TWISTA。状态寄存器TWISTA只表示TWI通讯中断产生时的通讯状态信息;其它情况下状态寄存器内是一个用于表示没有有效状态码的状态码。在中断清除之前,时钟线将维持低电平。应用软件可在处理完任务后才允许TWI通讯继续。

8.5.4 传输模式

TWI通讯是以字节为基础和中断驱动的通讯总线。诸如接收到一个字节或发送一个开始条件的所有总线事件均会产生一个中断。所以在字节传输期间,应用软件可以进行其它的操作。需注意的是,控制寄存器TWICON中的TWI使能位ENTWI和中断控制寄存器IENO中的所有中断控制位EA和TWI中断控制位ETWI将共同决定TWI中断标志TWINT被置位时是否会产生中断。如果ETWI或EA未置位,应用软件必须对TWINT标志进行枚举检测才能知道是否有TWI事件发生。

当TWINT位置起时,表示一次TWI传输已完成,等待应用软件的回应,此时状态寄存器TWISTA包含了当前的状态。应用软件可通过寄存器TWICON和TWISTA决定TWI进行哪种通讯。

下面将分别介绍TWI通讯的四种主要模式,并对所有可能的状态码进行了描述。下图中有如下缩写:

S: 开始条件

Rs: 重复开始条件

R: 读控制位

W: 写控制位

A: 应答位

A: 无应答位

DATA: 8位数据

P: 终止条件

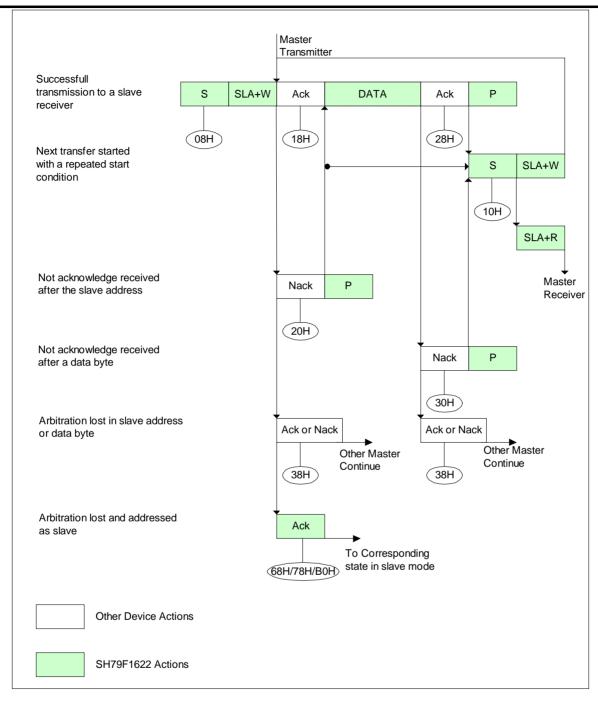
SLA: 从机地址

圆形用于表示中断标志已被置起。其中的数字表示当前状态寄存器TWISTA中被掩去低三位的状态码。在TWINT被清除之前,TWI通讯会暂停,应用软件必须决定是继续通讯还是终止当前传输。对每一个状态码,所需要的软件动作和随后的传输细节均有描述。

主机发送模式

主机发送模式中,主机发送一系列数据到从机。为进入主机发送模式,一个开始条件,随后一个从机地址+写控制字(SLA+W)地址包表示进入主机发送模式(MT)。

通过设置控制寄存器TWICON中的ENTWI和STA,清除STO和TWINT,TWI逻辑将检测TWI总线并在允许时发出一个开始条件(STA)。当开始条件(STA)传输完毕,通讯中断(TWINT)被置起,状态寄存器(TWISTA)为08H,中断服务程序应将从机地址和写控制字(SLA+W)写入数据寄存器TWIDAT。在开启下一个传输前清除TWINT标志。



当从机地址和写控制字传输完毕并收到一个"应答"信息时,中断(TWINT)被置起,状态寄存器TWISTA中有几个可能的状态:对主机模式有18H,20H和38H,对从机模式有68H,78H和B0H。

主机发送模式状态码

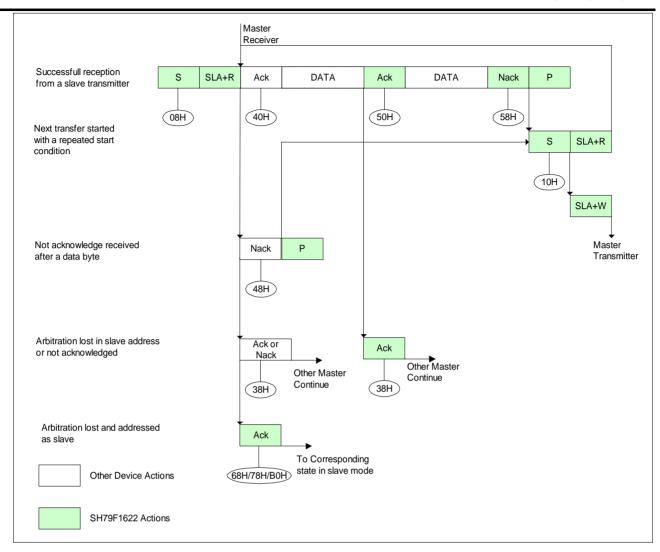
		应人	用软件	响应			
状态码	TWI总线和硬件	读/写数据寄存器		控制位			TWI执行的下一个动作
	接口状态	TWIDAT操作	STA	STO	TWI NT	AA	
08H	已发送开始条件	写入SLA+W	Х	0	0	Х	发送SLA+W,接收ACK
10H	已发送重复开始	写入SLA +W	Х	0	0	Х	发送SLA+W,接收ACK
1011	条件	写入SLA +R	Х	0	0	Х	发送SLA+R,TWI将切换到主机接收模式
		写入数据字节	0	0	0	Х	发送数据,接收ACK
18H	己发送SLA +W;		1	0	0	Х	发送重复开始条件
ТОП	18H 已接收ACK	无TWIDAT动作	0	1	0	Х	发送终止条件;清除STO标志
			1	1	0	Х	发送终止条件,之后发送起始条件; STO被清除
		写入数据字节	0	0	0	Х	发送数据,接收ACK
20H	己发送SLA +W;		1	0	0	Х	发送重复开始条件
2011	已接收NACK	无TWIDAT动作	0	1	0	Х	发送终止条件;清除STO标志
			1	1	0	Х	发送终止条件,之后发送起始条件; STO被清除
		写入数据字节	0	0	0	Х	发送数据,接收ACK
28H	已发送TWIDAT 中数据:		1	0	0	Х	发送重复开始条件
2011	一 中 数 据; 一 已 接 收 A C K	无TWIDAT动作	0	1	0	Х	发送终止条件;清除STO标志
			1	1	0	Х	发送终止条件,之后发送起始条件; STO被清除
		写入数据字节	0	0	0	Х	发送数据,接收ACK
30H	已发送TWIDAT 中数据;		1	0	0	Х	发送重复开始条件
30П	中剱菇; 已接收NACK	无TWIDAT动作	0	1	0	Х	发送终止条件;清除STO标志
			1	1	0	Х	发送终止条件,之后发送起始条件; STO被清除
38H	在SLA+W或数据 传输中丢失仲裁	无TWIDAT动作	0	0	0	Х	TWI总线被释放;进入非寻址从机模式
30П	传制中去大仲 位 位	九 I WIDA I 幼作	1	0	0	Х	在总线空闲时发送开始条件

主机接收模式

主机接收模式中,主机从从机接收一系列数据。为进入主机接收模式,一个开始条件,随后一个从机地址+读控制字(SLA+R)地址包表示进入主机接收模式(MR)。

通过设置控制寄存器TWICON中的ENTWI和STA,清除STO和TWINT,TWI逻辑将检测TWI总线并在允许时发出一个开始条件(STA)。当开始条件(STA)传输完毕,通讯中断(TWINT)被置起,状态寄存器(TWISTA)为08H,中断服务程序应将从机地址和读控制字(SLA+R)写入数据寄存器TWIDAT。在开启下一个传输前清除TWINT标志。

当从机地址和写控制字传输完毕并收到一个"应答"信息时,中断(TWINT)被置起,状态寄存器TWISTA中有几个可能的状态:对主机模式有40H,48H和38H,对从机模式有68H,78H和B0H。



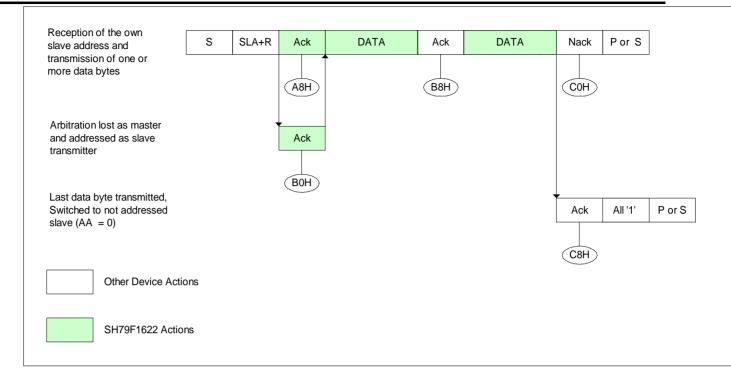
主机接收模式状态码

	.按収快八朳忩码	应)	用软件	响应					
状态码	TWI总线和硬件	读/写数据寄存器		控制位	立操作		TWI执行的下一个动作		
- PCNEA 3	接口状态	TWIDAT操作	STA	STO	TW INT	AA			
08H	已发送开始条件	写入SLA+R	Х	0	0	Х	发送SLA+R,接收ACK		
10H	已发送重复开始	写入SLA+R	Х	0	0	Х	发送SLA+R,接收ACK		
1011	条件	写入SLA+W	Х	0	0	Х	发送SLA+W,TWI将切换到主机发送模式		
38H	发送 SLA+R 或	工工MIDA工品作	0	0	0	Х	TWI总线被释放;进入非寻址从机模式		
3811	NACK 时 失 去 仲 裁	无TWIDAT动作	1	0	0	Х	在总线空闲时发送开始条件		
4011	已发送SLA+R;	TTMID ATTAK	0	0	0	0	接收数据,返回NACK		
40H	已接收ACK	无TWIDAT动作	0	0	0	1	接收数据,返回ACK		
			1	0	0	Х	发送重复开始条件		
48H	已发送SLA+R; 已接收NACK	无TWIDAT动作	0	1	0	Х	发送终止条件;清除STO标志		
			1	1	0	Х	发送终止条件,之后发送起始条件; STO被清除		
5011	数据已接收;	法取 署提	0	0	0	0	接收数据,返回NACK		
50H	已回应ACK	读取数据	0	0	0	1	接收数据,返回ACK		
	数据已接收; 己回应NACK	读取数据	1	0	0	Х	发送重复开始条件		
58H			0	1	0	Х	发送终止条件;清除STO标志		
			1	1	0	Х	发送终止条件,之后发送起始条件; STO被清除		

从机发送模式

从机发送模式中,从机发送一系列数据到主机。为初始化从机发送模式,必须对控制寄存器TWICON和地址寄存器TWIADR进行初始化:置位控制寄存器TWICON中的ENTWI和AA,清除STA、STO和TWINT;地址寄存器TWIADR中高7位为SH79F1622准备相应的地址。如果GC置位,SH79F1622也将响应通用地址(00H);否则将不响应通用地址。

在TWIADR和TWICON初始化后,SH79F1622将等待总线对自己地址或通用地址(如果GC被置位)的响应。如果方向标志位是"读",则TWI进入从机发送模式,否则将进入从机接收模式。在地址和读标志位接收完毕后,中断标志(TWINT)置位,状态寄存器TWISTA有效。


在传输中,如果将应答使能位"AA"清零,TWI将传送最后一个字节,并依据主机接收方发送的应答或不应答信息位进入C0H或C8H状态。总线将切换到非地址从机模式,不在响应主机传输。从而主机接收方将接收到一串"1"。最后一个字节发送完毕后,如果主机仍需额外的数据(传输"应答"信号),则进入C8H状态。

从机发送模式状态码

77.40	.友达模式状态的	应	用软件	响应			
状态码	TWI总线和硬件	读/写数据寄存器		控制位	立操作		TWI执行的下一个动作
小芯 问	接口状态	TWIDAT操作	STA	STO	TW INT	AA	1 AA140A(41 B) 1 1 ማንፈት
	已收到自己		Х	0	0	0	发送最后数据;等待ACK回应
A8H	SLA+R; 已经回应ACK	写入数据字节	Х	0	0	1	发送数据;等待ACK回应
	作为主机发送		Х	0	0	0	发送最后数据;等待ACK回应
вон	SLA+R/W时失去 仲裁,收到主机 SLA+R; 已回应ACK	写入数据字节	Х	0	0	1	发送数据;等待 ACK 回应
	已发送TWIDAT		Х	0	0	0	发送最后数据;等待ACK回应
B8H	B8H 数据; 已接收ACK回应	写入数据字节	Х	0	0	1	发送数据;等待ACK回应
		无TWIDAT动作	0	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址
	已发送TWIDAT		0	0	0	1	切换至非寻址从机模式;响应自己地址,是否响 应通用地址依赖于寄存器TWIADR中GC的设置
C0H	数据; 已接收 NACK 回 应		1	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址;总线空闲时发送"开始条件"
	<u>).v.</u>		1	0	0	1	切换至非寻址从机模式;响应自己地址,是否响应通用地址依赖于寄存器TWIADR中GC的设置;总线空闲时发送"开始条件"
			0	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址
	已发送最后一个		0	0	0	1	切换至非寻址从机模式;响应自己地址,是否响 应通用地址依赖于寄存器TWIADR中GC的设置
C8H	TWIDAT 数 据 (AA=0); 已接收ACK回应	无TWIDAT动作	1	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址;总线空闲时发送"开始条件"
			1	0	0	1	切换至非寻址从机模式;响应自己地址,是否响应通用地址依赖于寄存器TWIADR中GC的设置;总线空闲时发送"开始条件"

从机接收模式

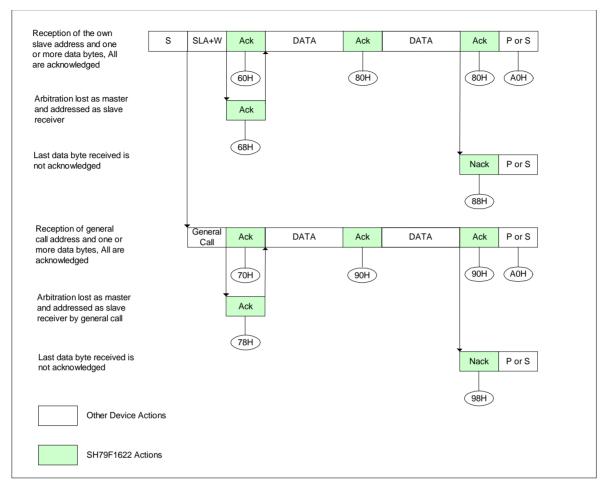
从机接收模式中,从机从主机接收一系列数据。为初始化从机接收模式,必须对控制寄存器TWICON和地址寄存器TWIADR进行初始化:置位控制寄存器TWICON中的ENTWI和STA,清除STO和TWINT;地址寄存器TWIADR中高7位为SH79F1622准备相应的地址。如果GC置位,SH79F1622也将响应通用地址(00H);否则将不响应通用地址。

在TWIADR和TWICON初始化后,SH79F1622将等待总线对自己地址或通用地址(如果GC被置位)的响应。如果方向标志位是'写',则TWI进入从机接收模式,否则将进入从机发送模式。在地址和写标志位接收完毕后,中断标志(TWINT)置位,状态寄存器TWISTA有效。

在传输中,如果将应答使能位"AA"清零,TWI将接收最后一个字节并回应"不应答"信息。回应"不应答"可以表示当前从机无法接收更多字节。当AA=0时,SH79F1622无法回应对自己地址的访问;但仍然监视总线状态,并可以通过AA=1恢复对自己地址的相应。可以通过AA=0暂时将SH79F1622从总线隔离。

79F1622作为从机接收模式时,最小接收频率为4.5KHz,小于4.5KHz时,无法正常接收数据。

从机接收模式状态码


	TWI总线和硬件 接口状态	应,	用软件	响应				
状态码		读/写数据寄存器	控制位操作				TWI执行的下一个动作	
- PANEAR J		TWIDAT操作	STA	STO	TW INT	AA		
60H	已收到自己	无TWIDAT动作	Х	0	0	0	接收数据;发送NACK回应	
ООП	SLA+W; 已回应ACK	儿TWIDATAITE	Х	0	0	1	接收数据;发送ACK回应	
	作为主机发送	无TWIDAT动作	Х	0	0	0	接收数据;发送NACK回应	
68H	SLA+R/W时失去 仲裁,收到主机 SLA+W; 已回应ACK		Х	0	0	1	接收数据;发送ACK回应	
70H	收到主机发送通	エエルリアムエミル佐	Х	0	0	0	接收数据;发送NACK回应	
/UH	用地址; 已回应 ACK	大TWIDAT动作	Х	0	0	1	接收数据;发送ACK回应	

	作为主机发送		Х	0	0	0	接收数据:发送NACK回应
78H	SLA+R/W时失去 仲裁,收到主机发 送通用地址; 已回应ACK	无TWIDAT动作	Х	0	0	1	接收数据,发送ACK回应
80H	处于已寻址状态; 已收到数据;	读取数据	Х	0	0	0	接收数据: 发送NACK回应
ООП	已収到数据; 已回应ACK	以 以 数 加	Х	0	0	1	接收数据:发送ACK回应
			0	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址
	处于已寻址状态;		0	0	0	1	切换至非寻址从机模式;响应自己地址,是否响 应通用地址依赖于寄存器TWIADR中GC的设置
88H	88H 已收到数据; 已回应NACK	读取数据	1	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址;总线空闲时发送"开始条件"
			1	0	0	1	切换至非寻址从机模式;响应自己地址,是否响应通用地址依赖于寄存器TWIADR中GC的设置;总线空闲时发送"开始条件"
	90H		Х	0	0	0	接收数据;发送NACK回应
90H		读取数据	Х	0	0	1	接收数据:发送ACK回应
			0	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址
	处于通用地址已 寻址状态;		0	0	0	1	切换至非寻址从机模式;响应自己地址,是否响应通用地址依赖于寄存器TWIADR中GC的设置
98H	已收到数据; 已回应NACK	读取数据	1	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址;总线空闲时发送"开始条件"
			1	0	0	1	切换至非寻址从机模式;响应自己地址,是否响应通用地址依赖于寄存器TWIADR中GC的设置;总线空闲时发送"开始条件"
			0	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址
	作为从机时收到		0	0	0	1	切换至非寻址从机模式;响应自己地址,是否响应通用地址依赖于寄存器TWIADR中GC的设置
A0H	终止条件或重复 开始条件	无TWIDAT动作	1	0	0	0	切换至非寻址从机模式;不响应自己地址和通用 地址;总线空闲时发送"开始条件"
			1	0	0	1	切换至非寻址从机模式;响应自己地址,是否响应通用地址依赖于寄存器TWIADR中GC的设置;总线空闲时发送"开始条件"

其它模式

除上述状态码外,两个状态码没有明确的TWI状态。状态0F8H表示由于中断标志TWINT未置起,没有相应的状态信息。当中断TWINT未置起,即在清除一个状态后到一个新状态建立前均由0F8H进行填充。

状态00H表示在TWI总线通讯中有错误发生,即传输中有非法的开始条件或终止条件发生。例如在传输地址,数据或回应ACK 应答时有起始条件或终止条件发生。当总线扰乱了内部逻辑时也会产生00H状态。当非法状态出现时,会置起中断标志位TWINT。可通过置起STO并清除TWINT标志恢复到正常通讯,SH79F1622将进入非寻址从机模式,并自动清除STO标志。数据线和时钟线将被释放,线上无终止条件传送。

其它模式状态码

	TWI总线和硬件 接口状态	应)	用软件叫	向应						
状态码		读/写数据寄存器	控制位操作				TWI执行的下一个动作			
. M. W. W. W.		TWIDAT操作	STA	STO	TW INT	AA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
F8H	没有有效状态码; TWINT=0	无TWIDAT动作	无TWICON动作				等待或处理当前传输			
00Н	在主机或寻址从 机模式下有非法 开始条件或终止 条件发送; 接口导致TWI内 部逻辑混乱	无TWIDAT动作	0	1	0	х	只有内部硬件受影响,释放总线;切换到非寻址 从机模式;清除STO			

8.5.5 寄存器

Table 8.25 TWI控制寄存器

F8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TWICON	TOUT	ENTWI	STA	STO	TWINT	AA	TFREE	EFREE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
	<i>=</i> . , ,	总线超时标志位
7	TOUT	0: 无超时发生
		1:当TWI总线低电平超过25ms时置位。必须由软件清除
		TWI使能位
6	ENTWI	0: 关闭TWI功能
		1: 开启TWI功能
		起始位
5	STA	0: 不会发送起始条件
		1: 当总线空闲时发送起始条件
		终止位
4	sто	0: 不会发送终止条件
		1: 作为主机时发送终止条件; 作为从机时不向总线发送终止条件, 但状态恢复
		到非寻址从机状态。硬件将自动清除该标志位
		TWI串行中断标志位
3	TWINT	0: 没有TWI串行中断发生
		1: 产生TWI通讯状态中除0F8H之外的状态时置位,必须由软件清除
		声明应答标志
2	AA	0: 回复"不应答"信号(SDA高电平)
		1: 回复"应答"信号(SDA低电平)
	TEDEE	SCL高电平超时标志位
1	TFREE	0: 无超时发生
		1:参与总线传输时如时钟线超过50us高电平时置位.必须由软件清除
	FEDEE	SCL高电平超时使能位
0	EFREE	0: 禁止SCL总线高电平超时判断
		1:允许SCL总线高电平超时判断

特别提示: TOUT, TWINT, TFREE均将触发TWI中断, 三者共享一个中断向量

Table 8.26 TWI状态寄存器

7,10,14	**							
E6H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TWISTA	TWISTA.7	TWISTA.6	TWISTA.5	TWISTA.4	TWISTA.3	CR.1	CR.0	ETOT
读/写	读	读	读	读	读	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	1	1	1	1	1	0	0	0

位编号	位符号	说明
7-3	TWISTA [7:3]	TWI串行通讯状态位
1-5	1111017 [1.0]	参见相应的状态描述
		TWI发送频率控制位
		00: fOSC/6/1024
		01: fOSC/6/256
1-2	CR[0:1]	10: fOSC/6/64
		11: fOSC/6/42
		当SH79F1622处于主机模式时,STA和STO以及重复STA的保持时间与CR[1:0]
		选中的发送频率相关
		总线超时使能位
0	ETOT	0:禁止总线超时判断
		1: 使能总线超时判断

Table 8.27 TWI地址寄存器

E7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TWIADR	TWA.6	TWA.5	TWA.4	TWA.3	TWA.2	TWA.1	TWA.0	GC
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-1	TWA [6:0]	TWI地址配置位
7-1	1 WA [0.0]	配置SH79F1622作为从机时的地址
		通用地址使能位
0	GC	0:禁止响应通用地址
		1:允许响应通用地址

Table 8.28 TWI数据寄存器

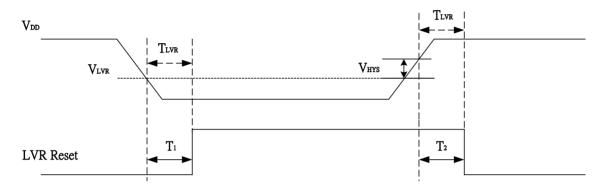
DFH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TWIDAT	TWIDAT.7	TWIDAT.6	TWIDAT. 5	TWIDAT. 4	TWIDAT.	TWIDAT. 2	TWIDAT .1	TWIDAT. 0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	TWIDAT [7:0]	TWI通讯数据寄存器

Table 8.29 系统时钟控制寄存器

B2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	32k_SPDUP	CLKS1	CLKS0	-	OSC2ON	-	-	-
读/写	读/写	读/写	读/写	-	读/写	•	-	-
复位值(POR/WDT/LVR/PIN)	1	1	1	-	0	-	-	-

位编号	位符号	说明
7	32k_SPDUP	32.768kHz晶体谐振器加速模式控制位 0: 32.768kHz振荡器常规模式,由软件清0。 1: 32.768kHz振荡器加速模式,由软件或者硬件置1。 此位在系统发生任何形式的复位,如上电复位,看门狗复位等时,自动由硬件设置1,用以加速32.768kHz振荡器起振,缩短32.768kHz振荡器的起振时间。如果有需要,本位也可以由软件置1或者清0。比如进入掉电模式(Power-down mode)前,可以将此位置1,掉电模式唤醒后再由软件清0。应该注意的是关闭32.768kHz加速模式(此位清0),可以节省系统的耗电。只有代码选项OP_OSC为011时(选择32.768kHz晶体振荡器,详见代码选项章节),此控制位才有效。
6-5	CLKS[1: 0]	系统时钟预分频器 00: f _{sys} = f _{oscs} 01: f _{sys} = f _{oscs} / 2 10: f _{sys} = f _{oscs} / 4 11: f _{sys} = f _{oscs} / 12 如果选择32.768kHz振荡器为OSCSCLK时钟源,则f _{sys} = f _{oscs} ,与CLKS[1:0] 内容无关。
3	OSC2ON	OSC2CLK开关控制寄存器 0: 关闭OSC2CLK 1: 打开OSC2CLK


8.6 低电压复位 (LVR)

8.6.1 特性

- 通过代码选项选择, LVR 设定电压 V_{LVR} 可为 2.8V 或 4.1V
- LVR 去抖动时间 T_{LVR} 为 30-60 µs
- 当供电电压低于设定电压 VLVR 时,将产生内部复位

低电压复位(LVR)功能是为了监测供电电压,当供电电压低于设定电压 V_{LVR} 时,MCU将产生内部复位。LVR去抖动时间 T_{LVR} 大约为 30μ s- 60μ s。

当V_{DD} > V_{LVR}+ V_{HYS}且T₂ ≥ T_{LVR}时释放系统复位或V_{DD} < V_{LVR},但T₁ < T_{LVR}时不会产生系统复位。其中V_{HYS}的范围是 0.09V~0.11V。

这里, V_{DD}为电源电压, V_{LVR}为LVR检测电压, V_{HYS}为低电压复位迟滞电压。

通过代码选项,可以选择LVR功能的打开与关闭。

在交流电或大容量电池应用中,接通大负载后容易导致MCU供电暂时低于定义的工作电压。低电压复位可以应用于此,保护系统在低于设定电压下产生有效复位。

8.7 看门狗定时器(WDT),程序超范围溢出(OVL)复位及其它复位状态

8.7.1 特性

- 看门狗可以工作在掉电模式下
- 程序超范围溢出后硬件自动检测,并产生 OVL 复位
- 看门狗溢出频率可选

8.7.2 程序超范围溢出复位

SH79F1622为进一步增强CPU运行可靠性,内建程序超范围溢出检测电路,一旦检测到程序计数器的值超出ROM最大值,或者发现指令操作码(不检测操作数)为8051指令集中不存在的A5H,便认为程序跑飞,产生CPU复位信号,同时将WDOF标志位置1。为应用这个特性,用户应该将未使用的Flash ROM用0xA5填满。

8.7.3 看门狗

看门狗定时器(WDT)是一个递减计数器,独立内建RC振荡器作为时钟源,因此可以通过代码选项在掉电模式下仍会持续运行。 当定时器溢出时,将芯片复位。通过代码选项可以打开或关闭该功能。

WDT控制位(第2-0位)用来选择不同的溢出时间。定时器溢出后,WDT溢出标志(WDOF)将由硬件自动置1。通过读或写RSTSTAT寄存器,看门狗定时器在溢出前重新开始计数。

其它一些复位标志列举如下:

8.7.4 寄存器

Table 8.30 复位状态寄存器

B1H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RSTSTAT	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR)	0	-	1	0	0	0	0	0
复位值 (WDT)	1	-	u	u	u	0	0	0
复位值 (LVR)	u	-	u	1	u	0	0	0
复位值 (PIN)	u	-	u	u	1	0	0	0

位编号	位符号	说明
7	WDOF	看门狗溢出或程序超范围溢出标志位 看门狗溢出时由硬件置1,可由软件或上电复位清0 0:未发生WDT溢出或程序超范围溢出 1:发生WDT溢出或程序超范围溢出
5	PORF	上电复位标志位 上电复位后硬件置1,只能由软件清0 0:没有发生上电复位 1:发生过上电复位
4	LVRF	低压复位标志位 低压复位后置1,可由软件或上电复位清0 0:没有发生低压复位 1:发生过低压复位
3	CLRF	Reset引脚复位标志位 引脚复位后置1,由软件或上电复位清0 0:没有发生引脚复位 1:发生过引脚复位
2-0	WDT[2:0]	WDT溢出周期控制位

8.8 音频发生器

SH79F1622有两个16位的音频发生器。音频发生器可以产生特定频率的方波。

Table 8.31 音频发生器控制寄存器 (TGCR11, 12: 21, 22)

	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TGCR11	TG1.7	TG1.6	TG1.5	TG1.4	TG1.3	TG1.2	TG1.1	TG1.0
TGCR12	TG1.15	TG1.14	TG1.13	TG1.12	TG1.11	TG1.10	TG1.9	TG1.8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

	位符号	说明
TGCR1[2:1]	TG1[13:0]	音频发生器 1 寄存器 位

	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TGCR21	TG2.7	TG2.6	TG2.5	TG2.4	TG2.3	TG2.2	TG2.1	TG2.0
TGCR22	TG2.15	TG2.14	TG2.13	TG2.12	TG2.11	TG2.10	TG2.9	TG2.8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

	位符号	说明
TGCR2[2:1]	TG2[13:0]	音频发生器2寄存器位

Table 8.32音频发生器音量控制寄存器 (TVCR[1:2])

	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TVCR1	TG1EN	TV1.6	TV1.5	TV1.4	TV1.3	TV1.2	TV1.1	TV1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
6-0	TV1[6:0]	音频发生器1音量寄存器
7	TG1EN	音频发生器1允许寄存器

	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TVCR2	TG2EN	TV2.6	TV2.5	TV2.4	TV2.3	TV2.2	TV2.1	TV2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
6-0	TV2[6:0]	音频发生器2音量寄存器
7	TG2EN	音频发生器2允许寄存器

音量控制寄存器用7Bit寄存器控制音频发生器的输出电平。

TGxEN(X=1, 2): 音频发生器x允许

0: 音频发生器x禁止(默认)

1: 音频发生器x允许

编程注意事项:

当音频发生器工作时,为了避免漏电,不可以执行POWER-DOWN或IDEA指令。

不要同时允许两个音频发生器通道来产生同一个音调,否则将产生一些无法预知的错误。如果必须同时使用2个通道(例如.为了播放双通道音乐),不要让曲调长时间产生相同的音调,这样才不会发生错误,即使发生错误,也会被听众忽略。

音频发生器输出波形的频率是从系统频率分频得来,其具体频率可以从下式得到:

Tone output frequency =
$$\frac{f_{sys}}{8 \times N}$$

其中,N = 10000H - TGCR (TGx.15 – TGx.0)
x = 1 or 2

音乐表1

Table 8.33 下表是音频发生器通道1在OSC = 27MHz下的音乐范围参考表

音符	理想频率	N	TGCR (TGx.13-TGx.0)	实际频率	差错率%	音符	理想频率	N	TGCR (TGx.13-TGx.0)	实际频率	差错率%
#D2	77.78	43391	5681	77.78	0.00%	D5	587.33	5746	E98E	587.36	0.01%
E2	82.41	40953	6007	82.41	0.00%	#D5	622.25	5423	EAD1	622.34	0.01%
F2	87.31	38655	6901	87.31	0.00%	E5	659.26	5119	EC01	659.30	0.01%
#F2	92.50	36486	717A	92.50	0.00%	F5	698.46	4832	ED20	698.46	0.00%
G2	98.00	34438	797A	98.00	0.00%	#F5	739.99	4560	EE30	740.13	0.02%
#G2	103.82	32508	8104	103.82	0.00%	G5	783.99	4304	EF30	784.15	0.02%
A2	110.00	30681	8827	110.00	0.00%	#G5	830.61	4063	F021	830.66	0.01%
#A2	116.54	28960	8EE0	116.54	0.00%	A5	880.00	3835	F105	880.05	0.01%
B2	123.47	27334	953A	123.47	0.00%	#A5	932.33	3619	F1DD	932.57	0.03%
C3	130.81	25800	9B38	130.81	0.00%	B5	987.77	3416	F2A8	987.99	0.02%
#C3	138.59	24352	A0E0	138.59	0.00%	C6	1046.5	3225	F367	1046.51	0.00%
D3	146.83	22985	A637	146.83	0.00%	#C6	1108.7	3044	F41C	1108.73	0.00%
#D3	155.56	21695	AB41	155.56	0.00%	D6	1174.7	2873	F4C7	1174.73	0.00%
E3	164.81	20478	B002	164.81	0.00%	#D6	1244.5	2711	F569	1244.92	0.03%
F3	174.61	19328	B480	174.61	0.00%	E6	1318.5	2559	F601	1318.87	0.03%
#F3	185.00	18243	B8BD	185.00	0.00%	F6	1396.9	2416	F690	1396.93	0.00%
G3	196.00	17219	BCBD	196.00	0.00%	#F6	1480.0	2280	F718	1480.26	0.02%
#G3	207.65	16253	C083	207.65	0.00%	G6	1568.0	2152	F798	1568.30	0.02%
А3	220.00	15340	C414	220.01	0.00%	#G6	1661.2	2031	F811	1661.74	0.03%
#A3	233.08	14480	C770	233.08	0.00%	A6	1760.0	1917	F883	1760.56	0.03%
В3	246.94	13667	CA9D	246.94	0.00%	#A6	1864.7	1809	F8EF	1865.67	0.05%
C4	261.63	12899	CD9D	261.64	0.00%	B6	1975.5	1708	F954	1975.99	0.02%
#C4	277.18	12176	D070	277.18	0.00%	C7	2093.0	1612	F9B4	2093.67	0.03%
D4	293.66	11492	D31C	293.68	0.01%	#C7	2217.5	1521	FA0F	2218.93	0.06%
#D4	311.13	10847	D5A1	311.14	0.00%	D7	2349.3	1436	FA64	2350.27	0.04%
E4	329.63	10238	D802	329.65	0.01%	#D7	2489.0	1355	FAB5	2490.77	0.07%
F4	349.23	9664	DA40	349.23	0.00%	E7	2637.0	1279	FB01	2638.78	0.07%
#F4	369.99	9121	DC5F	370.02	0.01%	F7	2793.8	1208	FB48	2793.87	0.00%
G4	392.00	8609	DE5F	392.03	0.01%	#F7	2960.0	1140	FB8C	2960.52	0.02%
#G4	415.30	8126	E042	415.33	0.01%	G7	3136.0	1076	FBCC	3136.61	0.02%
A4	440.00	7670	E20A	440.02	0.00%	#G7	3322.4	1015	FC09	3325.12	0.08%
#A4	466.16	7240	E3B8	466.16	0.00%	A7	3520.0	958	FC42	3522.96	0.08%
B4	493.88	6833	E54F	493.92	0.01%	#A7	3729.3	904	FC78	3733.40	0.11%
C5	523.25	6450	E6CE	523.25	0.00%	В7	3951.1	854	FCAA	3951.99	0.02%
#C5	554.37	6087	E839	554.46	0.02%	C8	4186.0	806	FCDA	4187.34	0.03%

8.9 电源管理

8.9.1 特性

- 空闲模式和掉电模式两种省电模式
- 发生中断和复位可退出空闲(Idle)、掉电(Power-Down)模式

为减少功耗,SH79F1622提供两种低功耗省电模式:空闲(Idle)模式和掉电(Power-Down)模式,这两种模式都由PCON和SUSLO两个寄存器控制。

8.9.2 空闲模式 (Idle)

空闲模式能够降低系统功耗,在此模式下,程序中止运行,CPU时钟停止,但外部设备时钟继续运行。空闲模式下,CPU 在确定的状态下停止,并在进入空闲模式前所有CPU的状态都被保存,如PC,PSW,SFR,RAM等。

两条连续指令:先设置SUSLO寄存器为0x55,随即将PCON寄存器中的IDL位置1,使SH79F1622进入空闲模式。如果不满足上述的两条连续指令,CPU在下一个机器周期清0SUSLO寄存器或IDL位,CPU也不会进入空闲模式。

IDL位置1是CPU进入空闲模式之前执行的最后一条指令。

两种方式可以退出空闲模式:

- (1) 中断产生。恢复CPU时钟,硬件清除SUSLO寄存器和PCON寄存器的IDL位。然后执行中断服务程序,随后跳转到进入空闲模式指令之后的指令。
- (2) 复位信号产生后(复位引脚上出现低电平,WDT复位,LVR复位)。CPU恢复时钟,SUSLO寄存器和在PCON寄存器中的IDL位被硬件清0,最后SH79F1622复位,程序从地址位0000H开始执行。此时,RAM保持不变而SFR的值根据不同功能模块改变。

8.9.3 掉电模式 (Power-Down)

掉电模式可以使SH79F1622进入功耗非常低的状态。掉电模式将停止CPU和外围设备的所有时钟信号。在掉电模式下,如果通过代码选项使能WDT,WDT模块将继续工作。在进入掉电模式前所有CPU的状态都被保存,如PC,PSW,SFR,RAM等。

两条连续指令:先设置SUSLO寄存器为0x55,随即将PCON寄存器中的PD位置1,使SH79F1622进入掉电模式。如果不满足上述的两条连续指令CPU在下一个机器周期清除SUSLO寄存器或的PD位,CPU也不会进入掉电模式。

PD位置1是CPU进入掉电模式之前执行的最后一条指令。

注意: 如果同时设置IDL位和PD位,SH79F1622进入掉电模式。退出掉电模式后,CPU也不会掉电进入空闲模式,从掉电模式退出后硬件清0 IDL及PD位。

有三种方式可以退出掉电模式:

- (1) 有效外部中断(如INT0,INT1,INT2,INT3)和LPD中断使SH79F1622退出掉电模式。在中断发生后振荡器启动,在 预热计时结束之后CPU时钟和外部设备时钟恢复,SUSLO寄存器和PCON寄存器中的PD位会被硬件清除,然后继续运行中断服 务程序。在完成中断服务程序之后,跳转到进入掉电模式之后的指令继续运行。
- (2) 复位信号(复位引脚上出现低电平,WDT复位如果被允许,LVR复位如果被允许)。在预热计时之后会恢复CPU时钟,SUSLO寄存器和PCON寄存器中的PD位会被硬件清除,最后SH79F1622会被复位,程序会从0000H地址位开始运行。RAM将保持不变,而根据不同功能模块SFR的值可能改变。
 - 注意: 如要进入这两种低功耗模式,必须在置位PCON中的IDL/PD位后增加3个空操作指令(NOP)。

8.9.4 寄存器

Table 8.34 电源控制寄存器

87H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	-	-	0	0	0	0

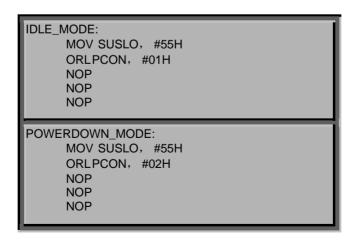

位编号	位符号	说明
7	SMOD	UART波特率加倍器
6	SSTAT	SCON[7:5]功能选择位
3-2	GF[1:0]	用于软件的通用标志
1	PD	掉电模式控制位 0: 当一个中断或复位产生时由硬件清0 1: 由软件置1激活掉电模式
0	IDL	空闲模式控制位 0: 当一个中断或复位产生时由硬件清0 1: 由软件置1激活空闲模式

Table 8.35 省电模式控制寄存器

8EH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SUSLO	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SUSLO[7:0]	此寄存器用来控制CPU进入省电模式(空闲或掉电)。只有像下面的连续指令才能 使CPU进入省电模式,否则在下个周期中SUSLO,IDL或PD位将被硬件清0。

程序举例:

8.10 预热计数器

8.10.1 特性

- 内建电源预热计数器消除电源的上电的不稳定状态
- 内建振荡器预热计数器消除振荡器起振时的不稳定状态

SH79F1622内建有电源上电预热计数器,主要是用来消除上电电压建立时的不稳定态,同时完成内部一些初始化序列,如读取内部客户代码选项等。

SH79F1622还内建振荡器预热计数器,它能消除振荡器在下列情况下起振时的不稳定状态:上电复位,引脚复位,从低功耗模式中唤醒,看门狗复位和LVR复位。

上电后,SH79F1622会先经过电源上电预热计数过程,等待溢出后再进行振荡器的预热计数过程过程,溢出后开始运行程序。

电源上电预热计数时间

上电复位/ 按键复位/低压复位		WDT复位 (不在掉电情况下)		WDT复位 (从掉电情况唤醒)		从掉电情况下唤醒 (只是中断唤醒)	
电源上电 预热计数时 间	振荡器上电 预热计数	电源上电 预热计数时 间	振荡器上电 预热计数	电源上电 预热计数时 间	振荡器上电 预热计数	电源上电 预热计数时 间	振荡器上电 预热计数
11ms	有	1000个时钟	无	1000个时钟	有	64个时钟	有

振荡器上电预热计数时间

振荡器类型	电源上电预热计数时间		
32.768K晶振	2 ¹³ X Tosc		
内部RC	2 ⁷ X Tosc		

8.11 代码选项

OP_WDT:

- 0: 允许看门狗复位 (默认)
- 1: 禁止看门狗复位

OP WDTPD:

- 0: 掉电模式下禁止看门狗工作(默认)
- 1: 掉电模式下允许看门狗工作

OP LVREN:

- 0: 禁止低电压复位功能(默认)
- 1: 允许低电压复位功能

OP LVRLE:

- 0: 低电压复位设定电压为4.1V (默认)
- 1: 低电压复位设定电压为2.1V

OP OSC:

- 000: 内部27MHz RC振荡器作为振荡器1,振荡器2关闭
- 011: 32.768kHz晶体谐振器作为振荡器1,27MHz内部RC作为振荡器2

OP LEDCOM:

- 0: P1.0~P1.6口普通输入电流能力(默认)
- 1: 代码选项为P1.0~P1.6口sink电流能力加大

OP RST:

- 0: P1.6作为允许引脚复位(默认)
- 1: P1.6作为I/O用

OP_SEG:

- 0: P0.0~P0.7, P2.0~P2.7 普通输出电流能力 (默认)
- 1: P0.0~P0.7, P2.0~P2.7 输出电流能力为普通模式的1/3.

9. 指令集

算术操作指令				
指令	功能描述	代码	字节	周期
ADD A, Rn	累加器加寄存器	0x28-0x2F	1	1
ADD A, direct	累加器加直接寻址字节	0x25	2	2
ADD A, @Ri	累加器加内部RAM	0x26-0x27	1	2
ADD A, #data	累加器加立即数	0x24	2	2
ADDC A, Rn	累加器加寄存器和进位位	0x38-0x3F	1	1
ADDC A, direct	累加器加直接寻址字节和进位位	0x35	2	2
ADDC A, @Ri	累加器加内部RAM和进位位	0x36-0x37	1	2
ADDC A, #data	累加器加立即数和进位位	0x34	2	2
SUBB A, Rn	累加器减寄存器和借位位	0x98-0x9F	1	1
SUBB A, direct	累加器减直接寻址字节和借位位	0x95	2	2
SUBB A, @Ri	累加器减内部RAM和借位位	0x96-0x97	1	2
SUBB A, #data	累加器减立即数和借位位	0x94	2	2
INC A	累加器加1	0x04	1	1
INC Rn	寄存器加1	0x08-0x0F	1	2
INC direct	直接寻址字节加1	0x05	2	3
INC @Ri	内部RAM加1	0x06-0x07	1	3
DEC A	累加器减1	0x14	1	1
DEC Rn	寄存器减1	0x18-0x1F	1	2
DEC direct	直接寻址字节减1	0x15	2	3
DEC @Ri	内部RAM减1	0x16-0x17	1	3
INC DPTR	数据指针加1	0xA3	1	4
MUL AB 8 X 8 16 X 8	累加器乘寄存器B	0xA4	1	11 20
DIV AB 8 / 8 16 / 8	累加器除以寄存器B	0x84	1	11 20
DA A	十进制调整	0xD4	1	1

指令	功能描述	代码	字节	周期
ANL A, Rn	累加器与寄存器	0x58-0x5F	1	1
ANL A, direct	累加器与直接寻址字节	0x55	2	2
ANL A, @Ri	累加器与内部RAM	0x56-0x57	1	2
ANL A, #data	累加器与立即数	0x54	2	2
ANL direct, A	直接寻址字节与累加器	0x52	2	3
ANL direct, #data	直接寻址字节与立即数	0x53	3	3
ORL A,Rn	累加器或寄存器	0x48-0x4F	1	1
ORL A, direct	累加器或直接寻址字节	0x45	2	2
ORL A, @Ri	累加器或内部RAM	0x46-0x47	1	2
ORL A, #data	累加器或立即数	0x44	2	2
ORL direct, A	直接寻址字节或累加器	0x42	2	3
ORL direct, #data	直接寻址字节或立即数	0x43	3	3
XRL A,Rn	累加器异或寄存器	0x68-0x6F	1	1
XRL A, direct	累加器异或直接寻址字节	0x65	2	2
XRL A, @Ri	累加器异或内部RAM	0x66-0x67	1	2
XRL A, #data	累加器异或立即数	0x64	2	2
XRL direct, A	直接寻址字节异或累加器	0x62	2	3
XRL direct, #data	直接寻址字节异或立即数	0x63	3	3
CLR A	累加器清零	0xE4	1	1
CPL A	累加器取反	0xF4	1	1
RL A	累加器左环移位	0x23	1	1
RLC A	累加器连进位标志左环移位	0x33	1	1
RR A	累加器右环移位	0x03	1	1
RRC A	累加器连进位标志右环移位	0x13	1	1
SWAP A	累加器高4位与低4位交换	0xC4	1	4

指令	功能描述	代码	字节	周期
MOV A, Rn	寄存器送累加器	0xE8-0xEF	1	1
MOV A, direct	直接寻址字节送累加器	0xE5	2	2
MOV A, @Ri	内部RAM送累加器	0xE6-0xE7	1	2
MOV A, #data	立即数送累加器	0x74	2	2
MOV Rn, A	累加器送寄存器	0xF8-0xFF	1	2
MOV Rn, direct	直接寻址字节送寄存器	0xA8-0xAF	2	3
MOV Rn, #data	立即数送寄存器	0x78-0x7F	2	2
MOV direct, A	累加器送直接寻址字节	0xF5	2	2
MOV direct, Rn	寄存器送直接寻址字节	0x88-0x8F	2	2
MOV direct1, direct2	直接寻址字节送直接寻址字节	0x85	3	3
MOV direct, @Ri	内部RAM送直接寻址字节	0x86-0x87	2	3
MOV direct, #data	立即数送直接寻址字节	0x75	3	3
MOV @Ri, A	累加器送内部RAM	0xF6-0xF7	1	2
MOV @Ri, direct	直接寻址字节送内部RAM	0xA6-0xA7	2	3
MOV @Ri, #data	立即数送内部RAM	0x76-0x77	2	2
MOV DPTR, #data16	16位立即数送数据指针	0x90	3	3
MOVC A, @A+DPTR	程序代码送累加器(相对数据指针)	0x93	1	7
MOVC A, @A+PC	程序代码送累加器(相对程序计数器)	0x83	1	8
MOVX A, @Ri	外部RAM送累加器(8位地址)	0xE2-0xE3	1	5
MOVX A, @DPTR	外部RAM送累加器(16位地址)	0xE0	1	6
MOVX @Ri, A	累加器送外部RAM(8位地址)	0xF2-F3	1	4
MOVX @DPTR, A	累加器送外部RAM(16位地址)	0xF0	1	5
PUSH direct	直接寻址字节压入栈顶	0xC0	2	5
POP direct	栈顶弹至直接寻址字节	0xD0	2	4
XCH A, Rn	累加器与寄存器交换	0xC8-0xCF	1	3
XCH A, direct	累加器与直接寻址字节交换	0xC5	2	4
XCH A, @Ri	累加器与内部RAM交换	0xC6-0xC7	1	4
XCHD A, @Ri	累加器低4位与内部RAM低4位交换	0xD6-0xD7	1	4

指令	功能描述	代码	字节	周期
ACALL addr11	2KB内绝对调用	0x11-0xF1	2	7
LCALL addr16	64KB内长调用	0x12	3	7
RET	子程序返回	0x22	1	8
RETI	中断返回	0x32	1	8
AJMP addr11	2KB内绝对转移	0x01-0xE1	2	4
LJMP addr16	64KB内长转移	0x02	3	5
SJMP rel	相对短转移	0x80	2	4
JMP @A+DPTR	相对长转移	0x73	1	6
JZ rel (不发生转移) (发生转移)	累加器为零转移	0x60	2	3 5
JNZ rel (不发生转移) (发生转移)	累加器为非零转移	0x70	2	3 5
JC rel (不发生转移) (发生转移)	C置位转移	0x40	2	2 4
JNC rel (不发生转移) (发生转移)	C清零转移	0x50	2	2 4
JB bit, rel (不发生转移) (发生转移)	直接寻址位置位转移	0x20	3	4 6
JNB bit, rel (不发生转移) (发生转移)	直接寻址位清零转移	0x30	3	4 6
JBC bit, rel (不发生转移) (发生转移)	直接寻址位置位转移并清该位	0x10	3	4 6
CJNE A, direct, rel (不发生转移) (发生转移)	累加器与直接寻址字节不等转移	0xB5	3	4 6
CJNE A, #data, rel (不发生转移) (发生转移)	累加器与立即数不等转移	0xB4	3	4 6
CJNE Rn, #data, rel (不发生转移) (发生转移)	寄存器与立即数不等转移	0xB8-0xBF	3	4 6
CJNE @Ri, #data, rel (不发生转移) (发生转移)	内部RAM与立即数不等转移	0xB6-0xB7	3	4 6
DJNZ Rn, rel (不发生转移) (发生转移)	寄存器减1不为零转移	0xD8-0xDF	2	3 5
DJNZ direct, rel (不发生转移) (发生转移)	直接寻址字节减1不为零转移	0xD5	3	4 6
NOP	空操作	0	1	1

指令	功能描述	代码	字节	周期	
CLR C	C清零	0xC3	1	1	
CLR bit	直接寻址位清零	0xC2	2	3	
SETB C	C置位	0xD3	1	1	
SETB bit	直接寻址位置位	0xD2	2	3	
CPL C	C取反	0xB3	1	1	
CPL bit	直接寻址位取反	0xB2	2	3	
ANL C, bit	C逻辑与直接寻址位	0x82	2	2	
ANL C, /bit	C逻辑与直接寻址位的反	0xB0	2	2	
ORL C, bit	C逻辑或直接寻址位	0x72	2	2	
ORL C, /bit	C逻辑或直接寻址位的反	0xA0	2	2	
MOV C, bit	直接寻址位送C	0xA2	2	2	
MOV bit, C	C送直接寻址位	0x92	2	3	

10. 电气特性

极限参数* *注释

如果器件的工作条件超过左列"**极限参数**"的范围,将造成器件永久性破坏。只有当器件工作在说明书所规定的范围内时功能才能得到保障。器件在极限参数列举的条件下工作将会影响到器件工作的可靠性。

直流电气特性 (V_{DD} = 2.7V - 5.5V, GND = 0V, T_A = +25°C, 除非另有说明)

参数	符号	最小值	典型值*	最大值	单位	条件
工作电压	V_{DD}	2.7	5.0	5.5	٧	32.768 KHz≤f _{OSC} ≤ 27MHz
工作电流	I _{OP}	-	5	10	mA	f_{OSC} = 27MHz, V_{DD} = 5.0V 所有输出引脚无负载(所有数字输入引脚不浮动);CPU打开 (执行NOP指令);WDT打开,关闭其它所有功能
待机电流 (空闲模式)	I _{SB1}	-	25	35	μΑ	f_{OSC} = 32.768KHz, V_{DD} = 5.0V, 所有输出引脚无负载CPU关闭(空闲模式);所有数字输入 引脚不浮动;LVR打开,WDT关闭,关闭其它所有功能
· 行机电机(工构模式)	I _{SB2}	-	3	5	mA	f _{OSC} = 27MHz, V _{DD} = 5.0V, 所有输出引脚无负载CPU关闭(空闲模式);所有数字输入 引脚不浮动;LVR打开,WDT关闭,关闭其它所有功能
待机电流 (掉电模式)	I _{SB3}	-	-	13	μΑ	所有振荡器关闭,V _{DD} = 5.0V 所有输出引脚无负载(所有数字输入引脚不浮动); CPU停止(掉电模式); WDT关闭,LVR打开,关闭其它所有功能
WDT电流	I _{WDT}	-	1	3	μΑ	所有输出引脚无负载, V _{DD} = 5.0V, WDT打开
输入低电压1	V_{IL1}	GND	-	0.3 X V _{DD}	V	I/O端口,V _{DD} = 2.7 - 5.5V
输入高电压1	V _{IH1}	0.7 X V _{DD}	-	V_{DD}	V	I/O端口,V _{DD} = 2.7 - 5.5V
输入低电压2	V _{IL2}	GND	-	0.2 X V _{DD}	V	RST, T2, T3, INT0/1/2/4, T2EX, RXD, TXD, V _{DD} = 2.7 - 5.5V
输入高电压2	V _{IH2}	0.8 X V _{DD}	-	V_{DD}	V	\overline{RST} , T2, T3, T4, $\overline{INT0/1/2//4}$, T2EX, RXD, TXD, $V_{DD} = 2.7 - 5.5V$
输入漏电流	I _{IL}	-1	-	1	μΑ	输入口,VDD = 5.0V,V _{IN} = V _{DD} 或者GND
输出漏电流	I _{OL}	-1	-	1	μΑ	开漏输出,V _{DD} = 5.0V V _{OUT} = V _{DD} 或者GND
复位引脚上拉电阻	R _{RPH}	-	30	-	kΩ	$V_{DD} = 5.0V$, $V_{IN} = GND$
上拉电阻	R_{PH}	-	30	-	kΩ	$V_{DD} = 5.0V$, $V_{IN} = GND$
输出高电压1	V _{OH1}	V _{DD} - 3V	-	1	٧	I/O端口,IOH =40mA,VDD = 5.0V (OP_SEG=0) P0.0~P0.7,P2.0~P2.7 普通输出电流能力
输出高电压2	V _{OH2}	V _{DD} - 3V			٧	I/O端口,IOH =14mA,VDD = 5.0V (OP_SEG=1) P0.0~P0.7,P2.0~P2.7 输出电流能力为普通模式的1/3.
输出低电压1	V _{OL1}	-	-	GND + 0.6	V	I/O端口(P0, P1, P2, P3), I _{OL} = 15mA,V _{DD} = 5.0V(OP_LEDCOM=0)
大驱动口灌电流能力	I _{OL}	88	100		mA	COM端口(P1.0~P1.6),V _{DD} = 5.0V,V _{OL} = GND + 0.3V 代码选项为(OP_LEDCOM=1)P1.0~P1.6口sink电流能力加大

注意:

- 1. "*"表示典型值下的数据是在5.0V, 25℃下测得的, 除非另有说明。
- 2. 流过V_{DD}的最大电流值在5.0V, 25℃下须小于150mA。
- 3. 流过GND的最大电流值在5.0V, 25℃下须小于300mA

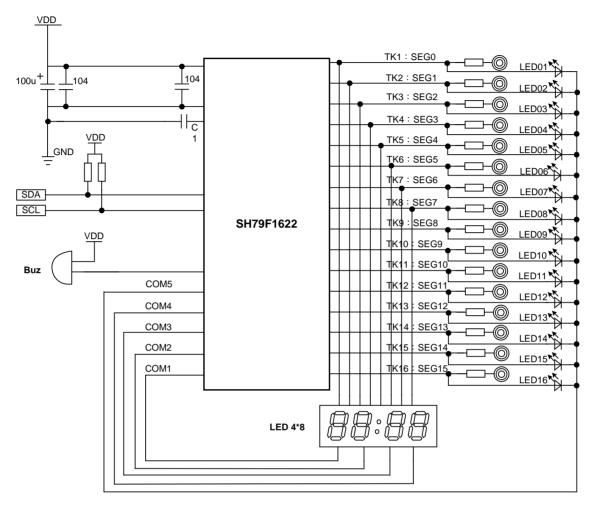
触摸按键电气特性 (V_{DD} = 2.7V - 5.5V,GND = 0V, T_A = +25 $^{\circ}$ C,除非另有说明。)

参数	符号	最小值	典型值	最大值	单位	条件
工作电压	V_{DD}	2.7V	-	5.5	V	
输出电压1	V_{DDR1}	3.9	4	4.1	V	V _{DD} =4.5~5.5V
输出电压2	V_{DDR2}	2.9	3.0	3.1	V	$IV_{DDR2}=0~20mA$, $V_{DD}=3.5~5.5V$
输出电压3	V_{DDR3}	2.4	2.5	2.6	V	IV _{DDR3} =0~20mA, V _{DD} =3.0~5.5V
输出电压4	V_{DDR4}	1.9	2	2.1	V	IV _{DDR4} =0~20mA, V _{DD} =2.7~5.5V
输出参考电压1	V_{REF1}	0.9	1	1.1	V	V _{DD} =2.7~5.5V
输出参考电压2	V_{REF2}	1.4	1.5	1.6	V	V _{DD} =2.7~5.5V
输出参考电压3	V _{REF3}	1.9	2.0	2.1	V	V _{DD} =2.7~5.5V
输出参考电压4	V_{REF4}	2.4	2.5	2.6	V	V _{DD} =3.0~5.5V

交流电气特性 (V_{DD} = 2.7V - 5.5V,GND = 0V,T_A = +25°C,f_{OSC} = 27MHz,除非另有说明。)

参数	符号	最小值	典型值	最大值	单位	条件
振荡器起振时间	Tosc	-	-	1	s	f _{OSC} =32.768kHz
复位脉冲宽度	t _{RESET}	10	-	-	μS	
WDT RC频率	f_{WDT}	-	1	2	kHz	
频率稳定性(RC)	Δ F /F1	-	-	±1	%	RC振荡器: F - 27MHz /27MHz(V _{DD} = 2.7- 5.5V,T _A = 25°C)
频率稳定性(RC)	Δ F /F2	-	-	±2.5	%	RC振荡器: F - 27MHz /27MHz(V _{DD} = 2.7- 5.5V,T _A = -40°C至 +85°C)

低电压复位电气特性 (V_{DD} = 2.7V - 5.5V, GND = 0V, T_A = +25°C, 除非另有说明。)

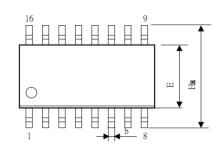

参数	符号	最小值	典型值	最大值	单位	条件
LVR设定电压1	V_{LVR1}	4.0	4.1	4.2	V	LVR使能 V _{DD} = 2.8V - 5.5V
LVR设定电压2	V_{LVR2}	2.7	2.8	2.9	V	LVR使能 V _{DD} = 2.0V - 5.5V
LVR电压检测迟滞窗口	V _{SMTLV}	-	50	-	mv	
LVR低电压复位宽度	T_{LVR}	-	60	-	μS	

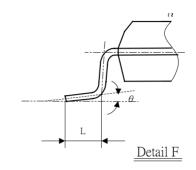
比较器电气特性 (VDD = 2.7 - 5.5V, GND = 0V, TA =+25°C, 除非另有说明)

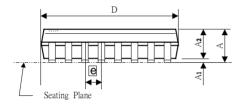
参数	符号	最小值	典型值	最大值	单位	条件
输入偏移电压	V_{IO}	-	10	15	mV	(T _A = 25°C)
输入电压随温度变化偏移 电压	V _{I1}	-	3	5	mV	$(T_A = -40^{\circ}C \sim 85^{\circ}C)$
输入共模电压范围	V_{ICM}	0	-	V _{DD} -1V	V	
大信号响应时间	T _{res1}	-	3	4	μS	V _{DD} =5v, C1P=2.5V, C1N=0V

11. 应用电路(LED SHARE 电路 仅供参考)

12. 订购信息

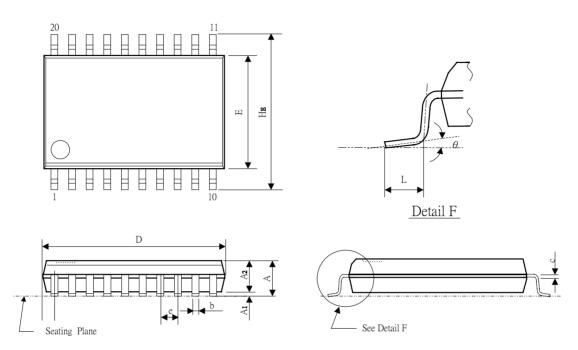

产品编号	封装
SH79F1622/M/028MU	SOP28
SH79F1622/M/020MU	SOP20
SH79F1622/M/016MU	SOP16




13. 封装信息


SOP 16L(150mil) Outline Dimensions

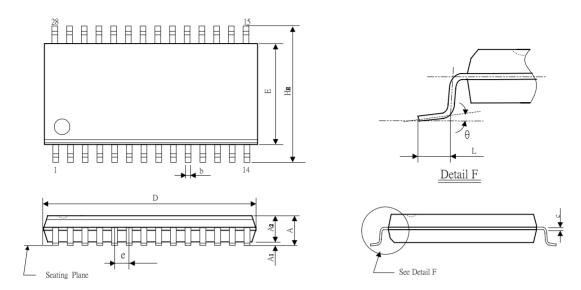
unit: inches/mm



Cumbal	Dimension	s in inches	Dimensio	ns in mm
Symbol	Min	Max	Min	Max
Α	0.053	0.071	1.35	1.8
A1	0.004	0.010	0.1	0.25
A2	0.049	0.061	1.25	1.55
b	0.013	0.020	0.33	0.51
С	0.008	0.014	0.2	0.35
D	0.386	0.394	9.8	10
Е	0.150	0.150 0.157		4
е	0.050	(BSC)	1.27(BSC)
H _E	0.228	0.248	5.8	6.3
L	0.016	0.050	0.4	1.27
θ	0°	8°	0°	8°

SOP 20L Outline Dimensions

unit: inches/mm



Symbol	Dimensions in inches		Dimensions in mm	
Symbol	Min	Max	Min	Max
Α	0.093	0.104	2.35	2.65
A1	0.004	0.012	0.10	0.30
A2	0.083	0.098	2.10	2.50
b	0.013	0.020	0.33	0.51
С	0.008	0.013	0.20	0.33
D	0.493	0.512	12.52	13.00
Е	0.291	0.299	7.40	7.60
е	0.050(BSC)		1.27(BSC)	
H _E	0.398	0.418	10.11	10.61
L	0.016	0.050	0.40	1.27
θ	0°	8°	0°	8°

SOP28L Outline Dimensions

unit: inches/mm

Complead	Dimensions in inches		Dimensions in mm	
Symbol	Min	Max	Min	Max
А	0.085	0.104	2.15	2.65
A1	0.004	0.012	0.10	0.30
A2	0.081	0.098	2.05	2.50
b	0.013	0.02	0.33	0.51
С	0.008	0.014	0.20	0.36
D	0.697	0.713	17.70	18.10
Е	0.291	0.3	7.40	7.62
е	0.050(BSC)		1.27(BSC)	
HE	0.402	0.418	10.21	10.61
L	0.016	0.05	0.40	1.27
θ	0°	8°	0°	8°

14. 规格更改记录

版本	记录	日期
2.0	增加SOP16封装及使用注意事项	2014年5月
1.0	初始版本	2013年12月

目	录	
1.	11.16	1
2.	概述	1
3.	方框图	2
4.		
5.		
6.		
7.		
7	7.1 CPU	
	7.1.1 CPU内核特殊功能寄存器	17
	7.1.2 CPU增强内核特殊功能寄存器	18
	7.1.3 寄存器	18
7	7.2 随机数据存储器(RAM)	19
	7.2.1 特性	19
7	7.3 FLASH程序存储器	20
	7.3.1 特性	20
	7.3.2 ICP模式下的Flash操作	
7	7.4 扇区自编程(SSP)功能	
	7.4.1 寄存器	
	7.4.2 Flash控制流程图	
	7.4.3 SSP 编程注意事项:	
	7.4.4 可读识别码	
7	7.5 系统时钟和振荡器	
	7.5.1 特性	
	7.5.2 <i>时钟定义</i>	
	7.5.3 概述	
	7.5.4 寄存器	
	7.5.5振荡器类型	
	7.5.6 谐振器负载电容选择	
7	7.6 I/O端口	
	7.6.1 特性	
	7.6.2 <i>寄存器</i>	
	7.6.3 端口模块图	
	7.6.4 端口共享	
7	- パロー パーティー - パー -	
•	7.7.1 特性	
	7.7.2 定时器2	
	7.7.3 定时器3	
	7.7.4 定时器4	
7	<i>,,,,,</i>	
,	7.8. <i>1</i> 特性	
	7.8.2 中断允许	
	7.8.3 寄存器	
	7.8.4 中断标志	
	7.8.5 中断向 <u>量</u>	
	7.8.6 中断优先级	
	7.8.7 中断处理	
	7.8.8 中断响应时间	
	7.9.9 外部中断输入	
	7.9.9 外部中町 糊入	
ρ	7.8.10 <i>中國汇息</i>	
ð	3.1 Touch key 触摸按键功能	
0	8.1.1 寄存器	
8	3.2 LED驱动器	
	8.2.1 寄存器	08

SH79F1622

8.2.2 LED RAM配置	
8.3 TOUCH KEY 触摸按键功能与LED 共享功能	74
8.3.1 功能描述	
8.3.2 SEG 口的SHARE列表	
8.4 增强型通用异步收发器(EUART)	76
8.4.1 特性	76
8.4.2工作方式	76
8.4.3 可微调波特率	
8.4.4 多机通讯	81
8.4.5寄存器	
8.5 TWI 串行通讯接口	86
8.5.1 特性	
8.5.2 数据传输格式	86
8.5.3 功能描述	88
8.5.4 传输模式	89
8.5.5 <i>寄存器</i>	
8.6 低电压复位(LVR)	101
8.6.1 特性	
8.7 看门狗定时器(WDT),程序超范围溢出(OVL)复位及其它复位状态	101
8.7.1 特性	
8.7.2 程序超范围溢出复位	
8.7.3 看门狗	
8.7.4 <i>寄存器</i>	
8.8 音频发生器	103
8.9 电源管理	106
8.9.1 特性	
8.9.2 空闲模式(Idle)	
8.9.3 掉电模式(Power-Down)	
8.9.4 寄存器	
8.10 预热计数器	108
8.10.1 特性	
8.11 代码选项	109
9. 指令集	110
10. 电气特性	
11. 应用电路(LED SHARE 电路 仅供参考)	117
12. 订购信息	
13. 封装信息	119
14. 规格更改记录	122