

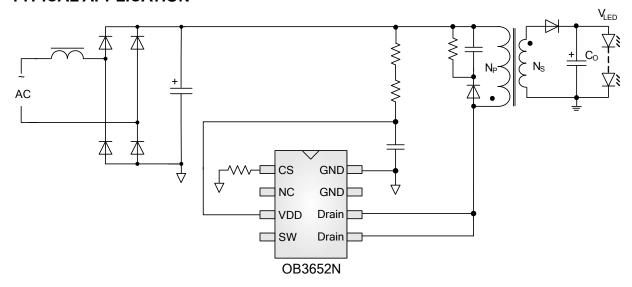
GENERAL DESCRIPTION

OB3652N is a primary side control offline LED lighting controller with very low operation current which can achieve accurate LED current for an isolated lighting application in a single stage converter.

It significantly simplifies the LED lighting system design by eliminating the secondary side feedback components and the opto-coupler, and also the auxiliary winding inductance. A HV 600V power switch is also integrated into the device. The LED current can be adjusted externally by the sense resistor Rs at CS pin and high precision constant current regulation is realized.

OB3652N offers comprehensive protection coverage with auto-recovery features including open loop protection, short circuit protection, cycle-by-cycle current limiting, built-in leading edge blanking, VDD under voltage lockout (UVLO), latched over temperature protection (OTP), etc.

OB3652N is offered in SOP-8 package.


FEATURES

- High precision Constant Current Regulation at Universal AC input
- Primary-side Sensing and Regulation Without TL431 and Opto-coupler
- Sense and supply without auxiliary winding inductance
- Low System Cost and High Efficiency
- Low operation current
- Programmable CC Regulation
- Built-in Primary winding inductance compensation
- Built-in line compensation
- Short Circuit Protection
- Open Loop Protection
- Cycle-by-Cycle Current Limiting
- Built-in Leading Edge Blanking (LEB)
- VDD Under Voltage Lockout with Hysteresis
- Latched over temperature protection (OTP)

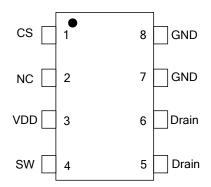
APPLICATIONS

LED lighting

TYPICAL APPLICATION

OUTPUT POWER TABLE

	Product	230VAC±15% 90-264VAC			
		Open Frame	Open Frame		
	OB3652NCP	7.3W	6.7W		


Notes: Maximum practical continuous power in an open frame design with sufficient drain pattern as a heat sink, at 50° C ambient and 60° C temperature rise. Higher output power is possible with extra added heat sink or air circulation to reduce thermal resistance.

GENERAL INFORMATION

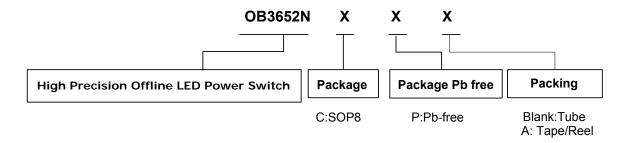
Pin Configuration

The pin map is shown as below for SOP-8.

Ordering Information

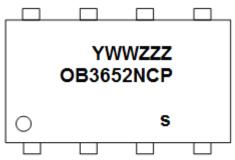
Part Number	Description
OB3652NCP	8 Pin SOP, Pb free in Tube
OB3652NCPA	8 Pin SOP, Pb free in T&R

Note: All Devices are offered in Pb-free Package if not otherwise noted.


Package Dissipation Rating

Package	RθJA (℃/W)
SOP-8	90

Absolute Maximum Ratings


Absolute Muximum Rutings						
Parameter	Value					
VDD Voltage	-0.3 to 20V					
DRAIN Voltage	-0.3 to 600V					
CS Input Voltage	-0.3 to 7V					
SW Input Voltage	-0.3 to 20V					
Min/Max Operating	-40 to 150 ℃					
Junction Temperature T _J	-40 to 150 C					
Min/Max Storage	-55 to 150 ℃					
Temperature T _{stg}	-33 to 130 C					
Lead Temperature	260 ℃					
(Soldering, 10secs)	200 C					

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Marking Information

Y: Year Code

WW: Week Code (01-52)

ZZZ:Lot Code

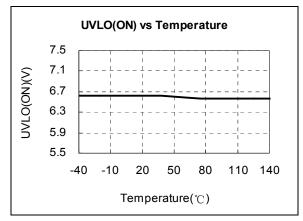
C: SOP8

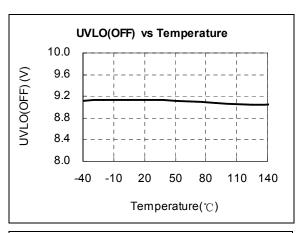
P:Pb-free Package

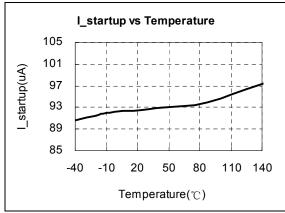
S: Internal Code(Optional)

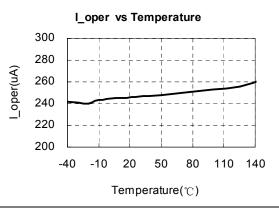
TERMINAL ASSIGNMENTS

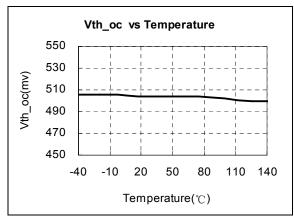
Pin Num	Pin Name	I/O	Description
1	CS	I	Current sensing terminal
2	NC		No Connection
3	VDD	Р	Power supply Input
4	SW	1	MOSFET Source Terminal
5,6	DRAIN	1	MOSFET Drain Terminal
7	GND	Р	Power Ground, suggest to be left floating with no pad in PCB layout.
8	GND	Р	Power Ground

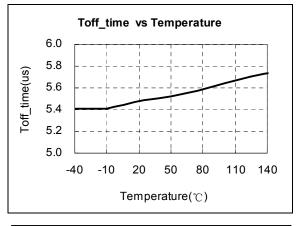

ELECTRICAL CHARACTERISTICS

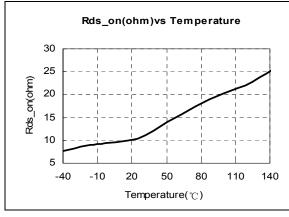

(TA = 25° C, VDD=7.5V, if not otherwise noted)

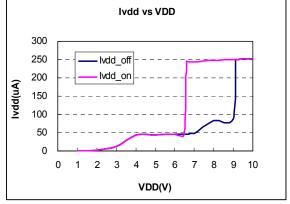

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
Supply Voltage (VDD) Section								
I start-up	up Start up current VDD=UVLO(OFF			120	150	uA		
I op	operation current	VDD=7.5V, no loading		250	300	uA		
UVLO(OFF)	VDD under voltage lockout exit			9		V		
UVLO(ON)	VDD under voltage lockout enter			6.5		V		
VDD_CLAMP	VDD CLAMP	VDD current 1mA		10.5		V		
Current Sense	Input Section			•				
TLEB	LEB time			0.3		us		
Vth_ocp	/th_ocp Over current threshold		485	500	515	mV		
Td_oc OCP propagation delay		From OCP comparator to gate drive		100		ns		
Toff_max	Maximum off time			600		us		
Toff_min	Minimum off time			5.5		us		
Ton_max Maximum on time				75		us		
Source Drive S	ection							
Rdson_I Source drive low side on resistor				1.3		ohm		
OTP Section								
OTP Over temperature protection				150		$^{\circ}$		
Power MOSFET	Power MOSFET Section							
BVdss	MOSFET Drain-Source Breakdown Voltage		600			V		
Rds,on On resistance		Static, Id=1A		9		ohm		




CHARACTERIZATION PLOTS







OPERATION DESCRIPTION

OB3652N is a primary side control offline LED lighting controller with very low operation current which can achieve accurate LED current for an isolated lighting application in a single stage converter. It significantly simplifies the LED lighting system design by eliminating the secondary side feedback components and the opto-coupler, and also the auxiliary winding inductance. A HV 600V power switch is also integrated into the device.

Start up Control

Startup process is realized by charging VDD capacitor. When VDD voltage reaches up to UVLO(OFF), the inner circuit works. An 10.5V (typical) clamp circuit is designed to clamp VDD voltage. At work state, no auxiliary winding inductance is necessary.

Adjustable CC point

In OB3652N, the CC point can be externally adjusted by external current sense resistor Rs at CS pin as illustrated in typical application diagram. The larger Rs is, the smaller CC point is, and vice versa.

Principle of CC Operation

For flyback operating in DCM, the output current lout is given by

$$Iout = \frac{1}{2} L_{p} F_{sw} I_{p}^{2} \eta / Vout$$
 (1)

Where Lp indicates the inductance of primary winding and Ip is the peak current of primary winding.

Refer to the equation 1, the change of the primary winding inductance results in the change of the constant output current. To compensate the change from variations of primary winding inductance, the switching frequency is locked by an internal loop such that the switching frequency is

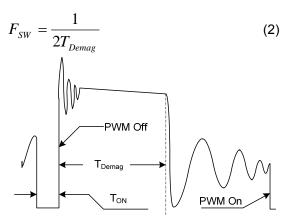


Figure.1 Drain voltage waveform

Since T_{Demag} is inversely proportional to the inductance, as a result, the product Lp and fsw is constant, thus output current will not change as primary winding inductance changes. Up to \pm 10% variation of the primary winding inductance can be compensated.

The output LED current is

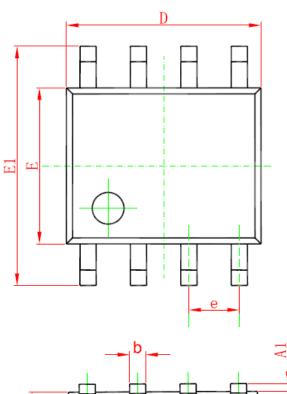
$$Iout = \frac{1}{4} N \frac{Vthoc}{Rs} \tag{3}$$

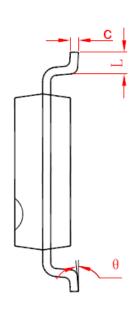
Where N is the ratio of transformer between primary-side winding and secondary winding.

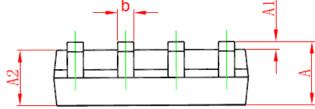
Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in OB3652N. The switch current is detected by a sense resistor into the CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial power MOSFET on state.

• Latched Over Temperature Protection


Over temperature protection is offered in OB3652N. When temperature of the device rises over 150 $^{\circ}$ C (typical), the switching frequency will decrease to half. And the state will be kept until the device restarts.




PACKAGE MECHANICAL DATA

8-Pin Plastic SOP

SOP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.050	0.250	0.002	0.010	
A2	1.250	1.650	0.049	0.065	
b	0.310	0.510	0.012	0.020	
С	0.100	0.250	0.004	0.010	
D	4.700	5.150	0.185	0.203	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 (E	BSC)	0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.