
# OZ8027T Flyback PFC Test Report Based on 7W LED Bulb Application

# 85-265Vac Input, 23V/300mA Output

#### **Key Features:**

- ◆ Excellent LED current regulation;
- ♦ Low cost with primary control;
- ♦ High power factor;
- ◆ Fast startup time;
- ◆ Protections with auto-recovery;



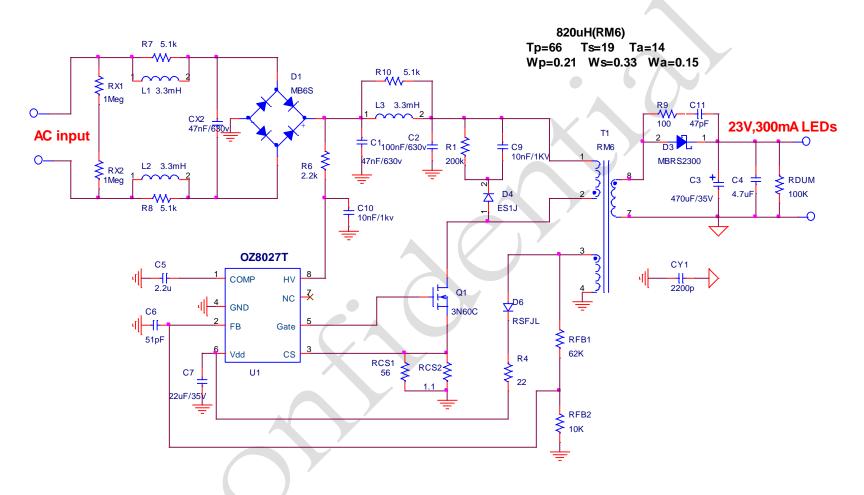






# **Table of Contents**

| 1.   | SCHEMATIC                                | 4  |
|------|------------------------------------------|----|
| 2.   | BOM LIST                                 | 5  |
| 3.   | ELECTRICAL CHARACTERISTIC                | 6  |
| 3.1. | Efficiency                               | 6  |
| 3.2. |                                          | 6  |
| 3.3. |                                          | 7  |
| 3.4. | THD and Harmonics Test                   | 8  |
| 3.5. |                                          | 9  |
| 3.6. | Turn-On Characteristics                  |    |
| 3.7. | Turn-off Characteristics                 | 10 |
| 3.8. |                                          | 11 |
| 3.9. | Open LED(OVP) protection                 | 12 |
| 3.10 | ). All of the LED Short Protection (SCP) | 13 |
| 4.   | EMI (CONDUCTION) PERFORMANCE             |    |
| 4.1. |                                          | 14 |
| 4.2. | Conduction_220Vac                        | 14 |
| DFM  | O BOARD DISCI AIMER NOTICE               | 15 |




# **Test conditions**

List of the main test equipment

| Item | Test Equipment         | Main Features     | Recommended           |
|------|------------------------|-------------------|-----------------------|
| 1    | AC Source              |                   | Chroma 61602          |
| 2    | Multimeter             |                   | Fluke 87<br>Fluke 189 |
| 3    | Digital Power<br>Meter |                   | HIOKI 3332            |
| 4    | Oscilloscope           | 4 channel, 100MHz | Tektronix, DPO3014    |
| 5    | Power analyzer         | WT3000            | YOKOGAWA              |
| 6    | EMI test receiver      | 9KHZ~300MHZ       | KH3909                |

#### 1. Schematic



Note: 1. Transformer T1 specification

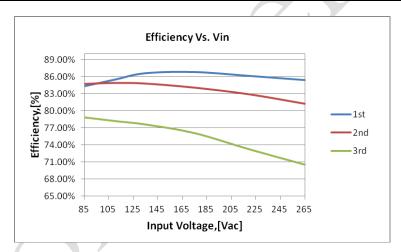
- 1) Bobbin: RM6,add faraday shielding between primary and secondary
- 2) Core material: PC40
- 3) Magnetizing inductance: Around 820uH
- 4) Np : Ns: Na = 66T : 19T : 14T



# 2. BOM List

| Item | Quantity | Designator | Description                                |  |  |  |  |  |  |
|------|----------|------------|--------------------------------------------|--|--|--|--|--|--|
| 1    | 2        | C1,CX2     | 47nF / 630V / Film/ Radial                 |  |  |  |  |  |  |
| 2    | 1        | C2         | 100nF / 630V / Film/ Radial                |  |  |  |  |  |  |
| 3    | 1        | C3         | 470uF / 35V / Aluminum Electrolytic        |  |  |  |  |  |  |
| 4    | 1        | C4         | 4.7uF / 50V / X7R / 1210 / By Murata       |  |  |  |  |  |  |
| 5    | 1        | C5         | 2.2uF / 16V / X7R / 0603 / By Murata       |  |  |  |  |  |  |
| 6    | 1        | C6         | 51pF / 16V / X7R / 0603 / By Murata        |  |  |  |  |  |  |
| 7    | 1        | C7         | 22uF / 35V / X7R / 2010 / By Murata        |  |  |  |  |  |  |
| 8    | 2        | C9,C10     | 10nF / 1KV / X7R / 1210                    |  |  |  |  |  |  |
| 9    | 1        | C11        | 47pF / 1KV / X7R / 1210                    |  |  |  |  |  |  |
| 10   | 1        | D1         | MB6S / 0.5A, 600V / SMD / Bridge Rectifier |  |  |  |  |  |  |
| 11   | 1        | D3         | MBRS2300 / 2A /300V                        |  |  |  |  |  |  |
| 12   | 1        | D4         | ES1J / 1A, 600V / Fast Recovery Rectifier  |  |  |  |  |  |  |
| 13   | 1        | D6         | RSFJL/0.5A,600V / Fast Recovery Rectifier  |  |  |  |  |  |  |
| 14   | 1        | CY1        | 2KV/2.2nF                                  |  |  |  |  |  |  |
| 15   | 3        | L1,L2,L3   | 3.3mH / Radial Leaded Wire Wound Inductor  |  |  |  |  |  |  |
| 16   | 1        | Q1         | 3N60C / 3A, 600V / TO-251                  |  |  |  |  |  |  |
| 17   | 1        | R1         | 200K / 5% / 1206                           |  |  |  |  |  |  |
| 18   | 1        | R4         | 22 ohm / 5% / 0805                         |  |  |  |  |  |  |
| 19   | 1        | R6         | 2.2K, 5% / 1206                            |  |  |  |  |  |  |
| 20   | 2        | R7,R8      | 5.1K/ 5% / 0805                            |  |  |  |  |  |  |
| 21   | 1        | R9         | 100ohm, 5% / 1206                          |  |  |  |  |  |  |
| 22   | 1        | R10        | 5.1K/ 5% / 0805                            |  |  |  |  |  |  |
| 23   | 1        | RCS1       | 1.1ohm/ 1% / 0805                          |  |  |  |  |  |  |
| 24   | 1        | RCS2       | 56ohm / 1% / 0805                          |  |  |  |  |  |  |
| 25   | 2        | RX1,RX2    | 1M / 5% / 1206                             |  |  |  |  |  |  |
| 26   | 1        | RFB1       | 62K / 1% / 0603                            |  |  |  |  |  |  |
| 27   | 1        | RFB2       | 10K / 1% / 0603                            |  |  |  |  |  |  |
| 28   | 1        | RDUM1      | 100K/ 5% / 0805                            |  |  |  |  |  |  |
| 29   | 1        | T1         | 820uH / RM6 / PC40                         |  |  |  |  |  |  |
| 30   | 1        | U1         | OZ8027T / O2micro / SOP8                   |  |  |  |  |  |  |
|      |          |            | Conclusion: Total 36 components            |  |  |  |  |  |  |




#### 3. Electrical Characteristic

## 3.1. Efficiency

Change Vin from 85Vac to 265Vac based on rated LED load, measure the efficiency.

$$EFF_{LED}, [\%] = \frac{V_{LED} \times I_{LED}}{P_{IN}} \times 100\%$$

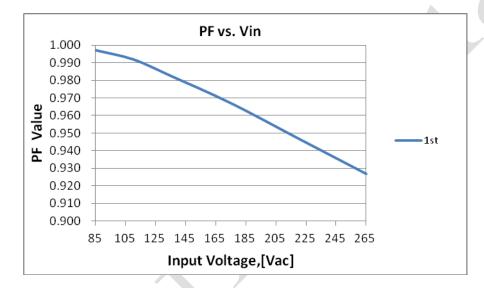
|                 | Dimming |            |        |        |        |        |        |        |
|-----------------|---------|------------|--------|--------|--------|--------|--------|--------|
|                 | level   | Vin(Vac)   | 85     | 110    | 135    | 175    | 220    | 265    |
|                 |         | Pin[W]     | 7.856  | 7.674  | 7.603  | 7.580  | 7.649  | 7.667  |
|                 | 1st     | ILED(mA)   | 305.4  | 305.2  | 305.0  | 304.8  | 304.7  | 304.9  |
|                 | 151     | VLED[V]    | 21.69  | 21.50  | 21.60  | 21.60  | 21.63  | 21.48  |
|                 |         | EFF_LED[%] | 84.32% | 85.51% | 86.65% | 86.86% | 86.16% | 85.42% |
| With            | 2nd     | Pin[W]     | 2.876  | 2.871  | 2.868  | 2.893  | 2.943  | 3.024  |
| 7*300mA<br>LEDs |         | ILED(mA)   | 122.3  | 122.2  | 122.1  | 122.2  | 122.6  | 123.2  |
| LLDS            | ZIIU    | VLED[V]    | 19.92  | 19.94  | 19.91  | 19.90  | 19.90  | 19.95  |
|                 |         | EFF_LED[%] | 84.71% | 84.87% | 84.76% | 84.06% | 82.90% | 81.28% |
|                 |         | Pin[W]     | 0.678  | 0.699  | 0.720  | 0.754  | 0.815  | 0.893  |
|                 | 3rd     | ILED(mA)   | 28.8   | 29.4   | 30.0   | 30.8   | 32.0   | 33.7   |
|                 | Siu     | VLED[V]    | 18.56  | 18.59  | 18.62  | 18.62  | 18.64  | 18.68  |
|                 |         | EFF_LED[%] | 78.84% | 78.19% | 77.58% | 76.06% | 73.19% | 70.49% |



#### 3.2. LED Current Accuracy vs. Vin

Change Vin from 85Vac to 265Vac based on rated LED load, measure the LED current.

$$ACC, [\%] = \frac{I_{LED} - I_{LED_{220Vac}}}{I_{LED_{220Vac}}} \times 100\%$$


|                 | Dimming |          |         |        |        |        |       |       |
|-----------------|---------|----------|---------|--------|--------|--------|-------|-------|
|                 | level   | Vin(Vac) | 85      | 110    | 135    | 175    | 220   | 265   |
|                 | 101     | ILED(mA) | 305.4   | 305.2  | 305.0  | 304.8  | 304.7 | 304.9 |
| With<br>7*300mA | 1st     | ACC, [%] | 0.23%   | 0.16%  | 0.10%  | 0.03%  | 0.00% | 0.07% |
| LEDs            | 2nd     | ILED(mA) | 122.3   | 122.2  | 122.1  | 122.2  | 122.6 | 123.2 |
| LLDS            |         | ACC, [%] | -0.24%  | -0.33% | -0.41% | -0.33% | 0.00% | 0.49% |
|                 | 3rd     | ILED(mA) | 28.8    | 29.4   | 30.0   | 30.8   | 32.0  | 33.7  |
|                 | Siu     | ACC, [%] | -10.00% | -8.13% | -6.25% | -3.75% | 0.00% | 5.31% |



#### 3.3. Power Factor test

Change Vin from 85Vac to 265Vac, measure the power factor.

|                      |            | Lina                    |       | Power Factor |       |
|----------------------|------------|-------------------------|-------|--------------|-------|
|                      | Vin, [Vac] | Line<br>Frequency, [Hz] | 1st   | 2nd          | 3rd   |
|                      | 85         | 60                      | 0.997 | 0.985        | 0.862 |
| With 7*300mA<br>LEDs | 110        | 60                      | 0.992 | 0.954        | 0.778 |
| LLD3                 | 135        | 60                      | 0.983 | 0.914        | 0.710 |
|                      | 175        | 50                      | 0.967 | 0.895        | 0.662 |
|                      | 220 50     |                         | 0.947 | 0.842        | 0.587 |
|                      | 265        | 50                      | 0.927 | 0.806        | 0.544 |



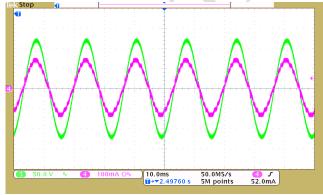



Fig-1: PF test, 85Vac, 60Hz, Ch3-V<sub>AC</sub>, Ch4-I<sub>LED</sub>

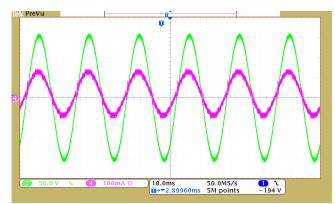



Fig-2: PF test, 110Vac, 60Hz, Ch3-V<sub>AC</sub>, Ch4-I<sub>LED</sub>



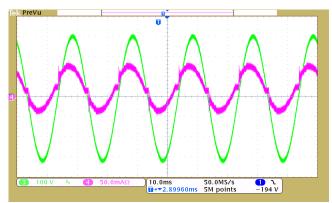



Fig-3: PF test, 220Vac, 50Hz, Ch3-V<sub>AC</sub>, Ch4-I<sub>LED</sub>

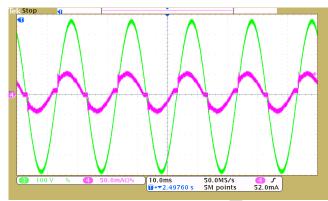
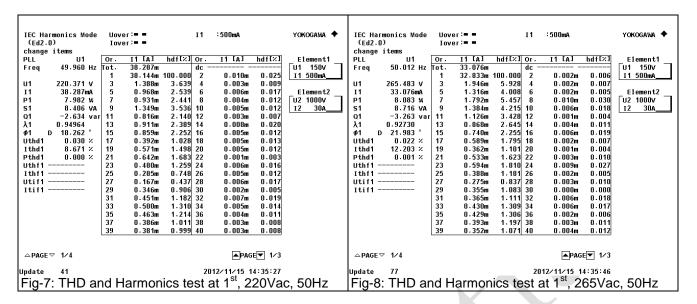




Fig-4: PF test, 265Vac, 50Hz, Ch3-V<sub>AC</sub>, Ch4-I<sub>LED</sub>

#### 3.4. THD and Harmonics Test

|                      |            | Line Fraguency                  | THD[%] |       |       |  |  |  |
|----------------------|------------|---------------------------------|--------|-------|-------|--|--|--|
|                      | Vin, [Vac] | Vin, [Vac] Line Frequency, [Hz] |        | 2nd   | 3rd   |  |  |  |
|                      | 85         | 60                              | 5.4%   | 13.9% | 19.3% |  |  |  |
| With 7*300mA<br>LEDs | 110        | 60                              | 6.3%   | 16.8% | 31.1% |  |  |  |
| LEDS                 | 135        | 60                              | 7.0%   | 7.1%  | 37.7% |  |  |  |
|                      | 175        | 50                              | 7.3%   | 16.0% | 39.0% |  |  |  |
|                      | 220        | 50                              | 8.7%   | 9.1%  | 39.7% |  |  |  |
|                      | 265        | 50                              | 12.2%  | 29.6% | 37.7% |  |  |  |

|                 | rmonics Mode  |      | er:= =  |         | Ι1   | :200mA                 |                 | YOKOGAWA ◆   |         | armonics Mode  |      | er:= =   | 11         | : 200mA              |                | YOKOGAWA ◆   |
|-----------------|---------------|------|---------|---------|------|------------------------|-----------------|--------------|---------|----------------|------|----------|------------|----------------------|----------------|--------------|
| (Ed2.)          | _             | Iov  | er:==   |         |      |                        |                 |              | (Ed2    |                | lov  | er:= =   |            |                      |                |              |
| change          |               |      |         |         |      |                        |                 |              |         | e items        |      |          |            |                      |                |              |
| PLL             | U1            | 0г.  | I1 [A]  | hdf[%]  |      | I1 [A]                 | hdf[%]          | _ Element1 _ | PLL     | U1             | 0r - | I1 [A]   | hdf[%] Or. | I1 [A]               | hdf[%]         | _ Element1 _ |
| Freq            | 59.913 Hz     | Tot. | 94.950m |         | dc - |                        |                 | U1 150V      | Freq    | 59.963 Hz      | Tot. | 72.574m  | dc ·       |                      |                | U1 150V      |
|                 |               | 1    | 94.811m | 100.000 |      | 0.002m                 | 0.002           | I1 200mA     |         |                | 1    | 72.431m  |            | 0.011m               | 0.016          | I1 200mA     |
| U1              | 85.135 V      | 3    | 2.580m  | 2.722   | 4    | 0.005m                 | 0.005           |              | U1      | 110.173 V      | 3    | 1.911m   | 2.638 4    | 0 · 010m             | 0.013          |              |
| I1              | 94.950mA      | 5    | 0.318m  | 0.336   | 6    | 0.006m                 | 0.007           | Element2     | I1      | 72 574mA       | 5    | 0.292m   | 0.403 6    | 0.002m               | 0.003          | _ Element2   |
| P1              | 8.0491 W      | 7    | 1.478m  | 1.559   | 8    | 0.013m                 | 0.014           | U2 1000V     | P1      | 7.9185 W       | 7    | 0.710m   | 0.980 8    | 0 · 008m             | 0.011          | U2 1000V     |
| S1              | 8.0717 VA     | 9    | 0.691m  | 0.729   |      | 0.005m                 | 0.005           | 12 30A       | S1      | 7.9799 VA      |      | 0.586m   | 0.809 10   | 0.002m               | 0.002          | 12 30A       |
| Q1              | -0.6038 var   | 11   | 0.867m  | 0.915   | 12   | 0.014m                 | 0.015           |              | Q1      | -0.9880 va     | г 11 | 0.659m   | 0.910 12   | 0.011m               | 0.016          |              |
| λ1              | 0.99720       | 13   | 1.680m  | 1.772   | 14   | 0.005m                 | 0.005           |              | λ1      | 0.99231        | 13   | 1.375m   | 1.898 14   | 0.003m               | 0.005          |              |
| φ1 I            | 0 4.290°      | 15   | 1.744m  | 1.839   | 16   | 0.001m                 | 0.001           |              | φ1      | D 7.112°       | 15   | 0.867m   | 1.197 16   | 0.009m               | 0.013          |              |
| Uthd1           | 0.028 %       | 17   | 1.381m  | 1.457   | 18   | 0.025m                 | 0.026           |              | Uthd1   | 0.034 %        | 17   | 1 · 125m | 1.553 18   | 0.009m               | 0.013          |              |
| Ithd1           | 5.407 ×       | 19   | 1.829m  | 1.929   | 20   | 0.006m                 | 0.006           |              | Ithd1   | 6.292 %        | 19   | 1.777m   | 2.453 20   | 0.010m               | 0.013          |              |
| Pthd1           | 0.001 ×       | 21   | 0.421m  | 0.444   | 22   | 0.005m                 | 0.006           |              | Pthd1   | 0.001 %        | 21   | 0.824m   | 1.138 22   | 0.006m               | 0.008          |              |
| Uthf1 -         |               | 23   | 1.085m  | 1.145   | 24   | 0.004m                 | 0.005           |              | Uthf1   |                | 23   | 1.321m   | 1.824 24   | 0.008m               | 0.011          |              |
|                 |               | 25   | 0.559m  | 0.590   | 26   | 0.006m                 | 0.007           |              | Ithf1   |                | 25   | 1.164m   | 1.607 26   | 0.014m               | 0.020          |              |
| Utif1 -         |               | 27   | 0.915m  | 0.966   | 28   | 0.011m                 | 0.011           |              | Utif1   |                | 27   | 1.200m   | 1.657 28   | 0.007m               | 0.010          |              |
| Itif1 -         |               | 29   | 0.476m  | 0.502   | 30   | 0.008m                 | 0.008           |              | Itif1   |                | 29   | 0.926m   | 1.278 30   | 0.009m               | 0.012          |              |
|                 |               | 31   | 0.395m  | 0.417   | 32   | 0.006m                 | 0.006           |              |         |                | 31   | 0.564m   | 0.778 32   | 0.006m               | 0.009          |              |
|                 |               | 33   | 0.729m  | 0.769   | 34   | 0.006m                 | 0.006           |              |         |                | 33   | 0.706m   | 0.975 34   | 0.004m               | 0.006          |              |
|                 |               | 35   | 0.460m  | 0.485   | 36   | 0.002m                 | 0.003           |              |         |                | 35   | 0.634m   | 0.875 36   | 0.007m               | 0.009          |              |
|                 |               | 37   | 0.039m  | 0.041   | 38   | 0.013m                 | 0.013           |              |         |                | 37   | 0.425m   | 0.586 38   | 0.016m               | 0.022          |              |
|                 |               | 39   | 0.236m  | 0.249   | 40   | 0.007m                 | 0.008           |              |         |                | 39   | 0.390m   | 0.538 40   | 0.002m               | 0.003          |              |
|                 | '             |      |         |         |      |                        |                 |              |         |                |      | 0.000    | 0.000      | 0.002                | 0.000          |              |
|                 |               |      |         |         |      |                        |                 |              |         |                |      |          |            |                      |                |              |
| △ PAGE          | ▽ 1/4         |      |         |         |      | <b>▲</b> PAG           | E <b>▼ 1</b> ⁄3 |              | △PAG    | E⊽ <b>1</b> /4 |      |          |            | ₽AG                  | E <b>▼</b> 1⁄3 |              |
|                 |               |      |         |         |      |                        |                 |              | l       |                |      |          |            |                      | _              |              |
| Update          | 312           |      |         |         | 20   | 12/11/15 1             | 4:34:48         |              | Update  | 374            |      |          | 2          | 012/11/15 1          | 4:35:07        |              |
|                 |               |      |         |         |      |                        |                 |              |         |                |      |          |            |                      |                |              |
| Fig-            | 5: THD a      | nd I | Harmo   | nics te | est  | at 1 <sup>st</sup> . 8 | 35Vac           | . 60Hz       | Fig-    | 6: THD a       | nd F | larmon   | ics test   | at 1 <sup>st</sup> 1 | 10Va           | : 60Hz       |
| _ · · · · · · · | - · · · · - u |      |         |         |      | , ,                    |                 | ,            | i. ia , | u              |      |          | .55 1551   | <u> </u>             |                | , 501 12     |



#### 3.5. Operating Frequency and Ripple Test

Change Vin from 85Vac to 265Vac based on variable LED load, measure the operating frequency and complete the table below.

| Vin, [Vac] | Line Frequency, [Hz] | Output current ripple Ipp(mA) |
|------------|----------------------|-------------------------------|
| 85         | 60                   | 236                           |
| 110        | 60                   | 236                           |
| 220        | 50                   | 260                           |
| 265        | 50                   | 252                           |

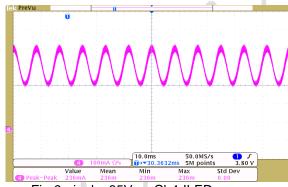



Fig-9: ripple, 85Vac, Ch4-ILED

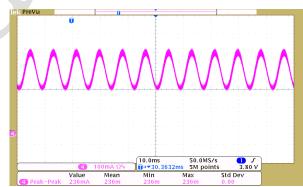



Fig-10: ripple, 110Vac, Ch4-ILED

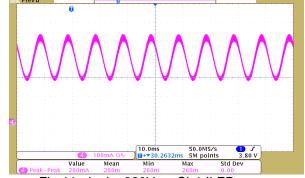



Fig-11: ripple, 220Vac, Ch4-ILED

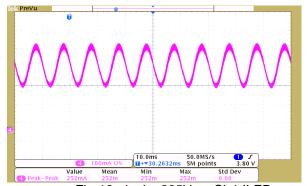
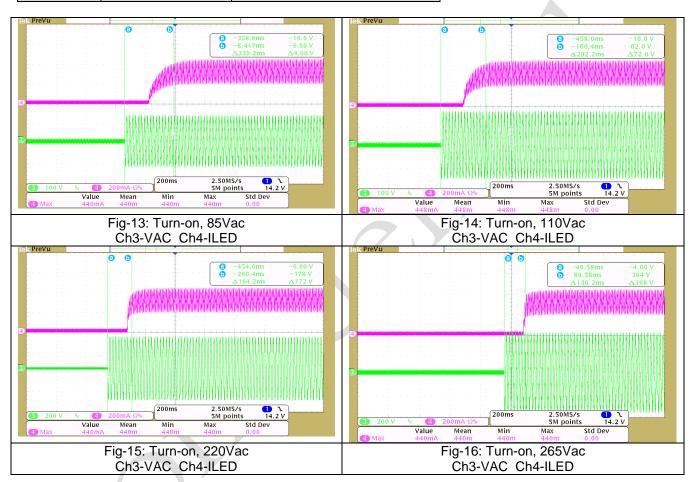


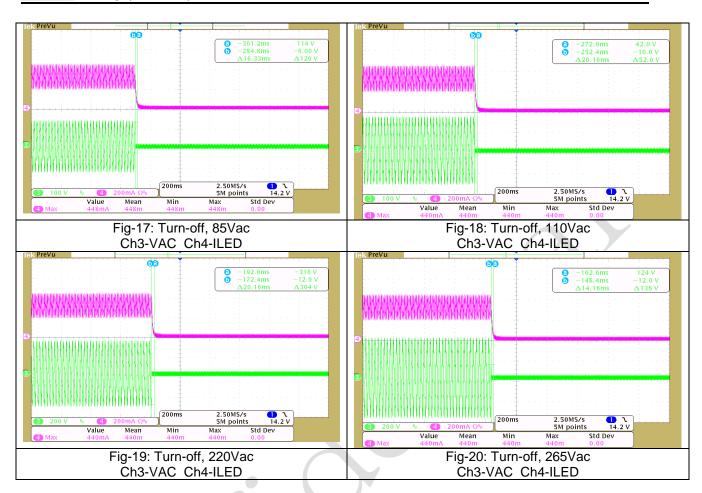

Fig-12: ripple, 265Vac, Ch4-ILED


page 9



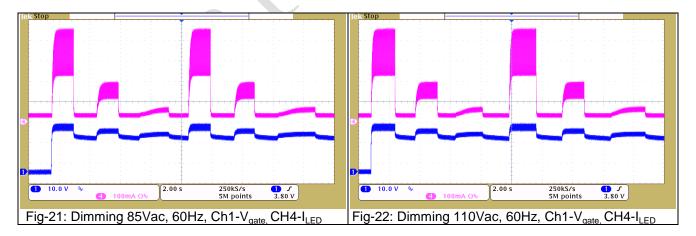
#### 3.6. Turn-On Characteristics

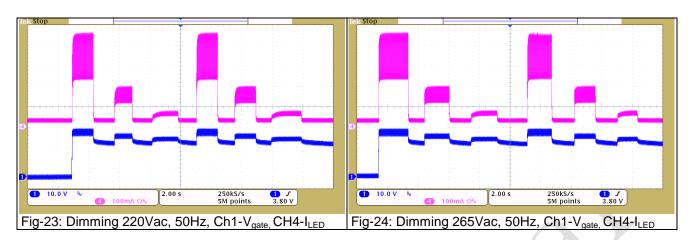
Change Vin from 85Vac to 265Vac, measure the turn-on delay time.


| Startup time, [ms] | Line Frequency, [Hz] | Vin, [Vac] |
|--------------------|----------------------|------------|
| 330                | 60                   | 85         |
| 292                | 60                   | 110        |
| 164                | 50                   | 220        |
| 136                | 50                   | 265        |



#### 3.7. Turn-off Characteristics

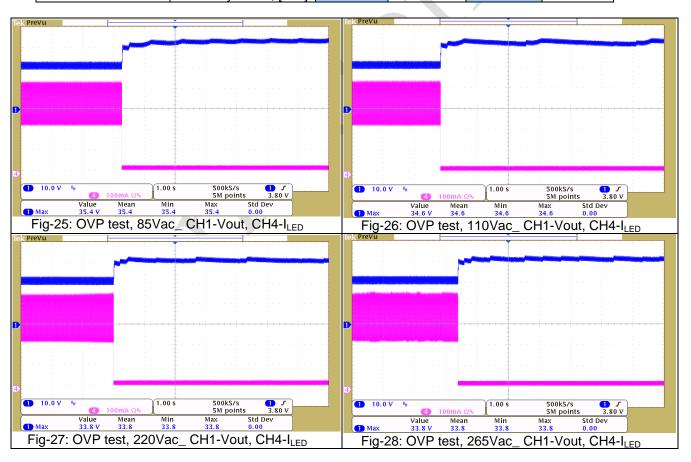

Change Vin from 85Vac to 265Vac based on rated LED load, measure the holdup time.


| Vin, [Vac] | Line Frequency, [Hz] | Holdup time, [ms] |
|------------|----------------------|-------------------|
| 85         | 60                   | 16.33             |
| 110        | 60                   | 20.16             |
| 220        | 50                   | 20.16             |
| 265        | 50                   | 14.16             |



## 3.8. Dimming Function Testing

Change Vin from 85Vac to 265Vac based on variable LED load, test dimming function.

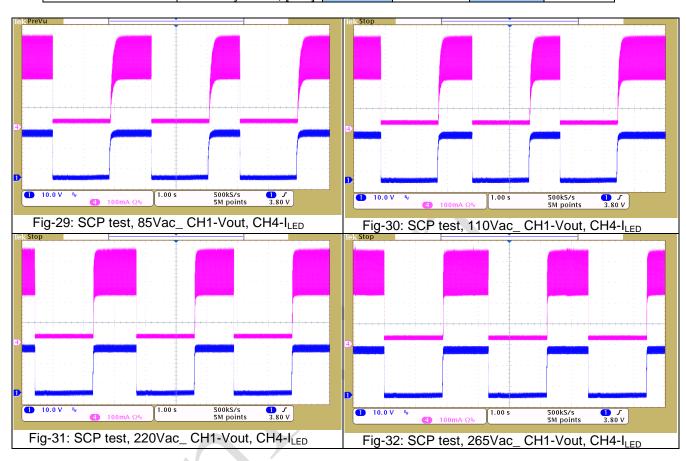





#### 3.9. Open LED(OVP) protection

Open LED during normal operation and complete the table below.

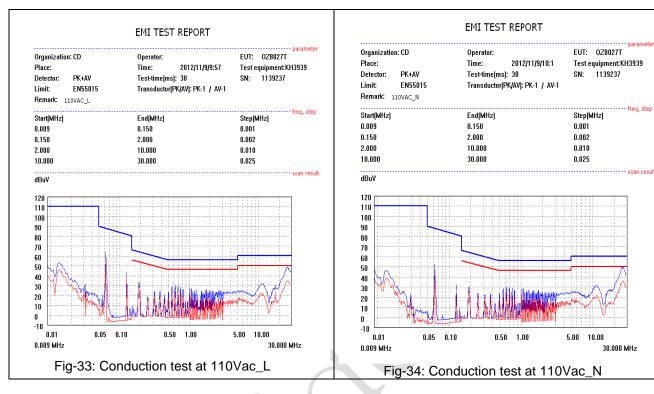
|                     | Vac, [Vac]                              | 85   | 110  | 220  | 265  |
|---------------------|-----------------------------------------|------|------|------|------|
| W/:4b 7*200 A   FD- | · • • • • • • • • • • • • • • • • • • • |      |      |      |      |
| With 7*300mA LEDs   | Vout_peak, [V]                          | 35.4 | 34.6 | 33.8 | 33.8 |
|                     | Pin after OVP, [mW]                     | 129  | 141  | 276  | 337  |
|                     | Recovery or not, [Y/N]                  | Υ    | Υ    | Υ    | Υ    |





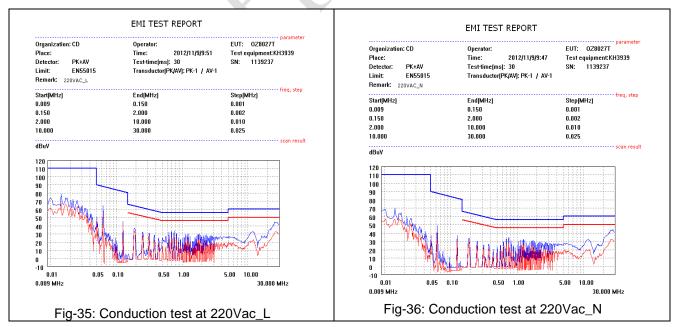

#### 3.10. All of the LED Short Protection (SCP)

Short the output during normal operation then release.


| With 7*300mA LEDs | Vac, [V]               | 85  | 110 | 220 | 265 |
|-------------------|------------------------|-----|-----|-----|-----|
|                   | Pin after SCP, [mW]    | 160 | 199 | 255 | 305 |
|                   | Recovery or not, [Y/N] | Υ   | Υ   | Υ   | Υ   |






## 4. EMI (CONDUCTION) PERFORMANCE

## 4.1. Conduction\_110Vac



110Vac conduction test result: >-6dB margin

#### 4.2. Conduction\_220Vac



220Vac conduction test result: > -6dB margin



#### **Demo board Disclaimer Notice**

O2Micro International Ltd, and its subsidiaries, ("O2Micro") provides the enclosed product(s) and information subject to the following terms and conditions ("Terms") to its current and potential customers, partners or other persons or representatives receiving the products covered hereunder (collectively referred to as "User").

- 1. The demonstration board(s)/kit(s) provided herewith (collectively referred to as "Demo Board") are provided to User on a non-exclusive basis for **ENGINEERING, DEVELOPMENT, DEMONSTRATION, AND/OR EVALUATION PURPOSES ONLY**. Transfer or resale of the Demo Board to any other party is expressly prohibited. Acceptance of the Demo Board is subject to these Terms. If User does not agree with the Terms, or if the Demo Board does not meet the specifications recited in any supporting documentation (including related datasheets), User must promptly notify O2Micro, or immediately return the Demo Board to O2Micro. User may not sublicense, rent, lease, or assign the obligations of these Terms without O2Micro's express written authorization.
- 2. The Demo Board is not intended to be used for commercial use. As such, the Demo Board may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
- 3. O2Micro reserves the right to make corrections, modifications, enhancements, improvements, and other changes to the Demo Board at any time. O2Micro reserves the right to discontinue production, distribution or support of such without notice. Users should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
- 4. The Demo Board is provided "as is" and with no express or implied warranties, representations or conditions of merchantability, quality, and fitness for a particular purpose relating to O2Micro's products, services, and/or related products that O2Micro and it customers and partners may provide. Without limitation, no warranty is given that the Demo Board is error-free, free of defects, or regulatory compliant and/or agency certified (FCC, UL, CE, etc.). O2Micro products, including the Demo Board, are neither designed nor intended for use in medical or life critical applications or environments. All such warranties and representations, whether expressed or implied, are hereby excluded. O2Micro disclaims any liability or responsibility arising from any claim that User's access to or use of the Demo Board and/or related products infringes any third party's intellectual property rights.
- 5. Except where mandated by government requirements, testing of all parameters of each Demo Board is not necessarily performed. O2Micro assumes no liability for applications assistance or User's product designs. Users are responsible for their products and applications using the Demo Board and any other O2Micro



- components. To minimize the risks associated with User's products and applications, User should provide adequate design and operating safeguards.
- 6. Use of the Demo Board in any high risk activities where damage or injury to persons, property, environment or business may result if an error occurs. The User expressly assumes all risk for such use, and hold O2Micro harmless for any such use. The User assumes all responsibility and liability for proper and safe handling of the Demo Board. Due to possible open construction of the Demo Board, it is the User's responsibility to take any and all appropriate precautions with regard to electrostatic discharge and any other technical or legal concerns. User may not reverse engineer or decompile the Demo Board, or any components thereof.
- 7. User represent that it has all necessary expertise in the legal, safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and use of the Demo Board therewith. User warrants that its use of the Demo Board is for lawful business purposes, and does not violate any third party's intellectual property or other rule of law, applicable customs requirements or other relevant regulation or legislation. Further, the User shall indemnify O2MICRO from all claims, costs and damages arising from the handling or use of the Demo Board. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR O2MICRO SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
- 8. Under no circumstances does O2Micro grant any license to User (or any other third party) under any patent right, trademark, copyright, mask work, design right, or any other intellectual property right of O2Micro covering or relating to the Demo Board or any machine, process, or combination in which such O2Micro products or services might be or are used.
- 9. Reproduction of any O2Micro information or datasheets is permissible only upon express written approval by O2Micro, and such reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. O2Micro considers unauthorized reproduction of this information with alteration is an unfair and deceptive business practice, and O2Micro is not responsible or liable for such altered documentation.
- 10. For additional information, contact O2Micro at the following address:

O2Micro 3118 Patrick Henry Drive Santa Clara, CA 95054