

Based on 10.8W LED Application

90-264Vac Input, 54V/200mA Lighting

Key Features:

- ◆ 3-level analog dimming control using a wall switch
- Excellent LED current regulation
- ◆ High power factor at full load (>0.93 over the universal input range)
- ♦ High efficiency up to 91%
- Direct powered by rectified off-line voltage
- Protections with auto-recovery

Table of Contents

0.1 Schematic	3	
0.2 BOM List	4	
1. Efficiency	5	
2. LED Current Accuracy vs. Vin	6	
3. Power Factor and THD Test	6	
4. LED Ripple Current	9	
5. Dimming Function Testing	9	
6. Turn-on Characteristics	9	
7. Turn-off Characteristics	10	
8. Open LED (OVP) Protection		
9. All of the LED Short Protection (SCP)		
10. Conducted EMI Test	12	
Demo Board Disclaimer Notice		

Test conditions

If it is not specified express, the Nominal Testing Conditions suppose: -Ambient Temperature: $25^{\circ}C$

Item	Test Equipment	Main Features	Recommended
1	AC Source		Chroma 61602
2	Multimeter		Fluke 87III Fluke 289C
3	Precision Power Analyzer		YOKOGSAWA WT3000
4	Oscilloscope	4 channel, 300MHz	Tektronix, TDS 3034B
5	EMI Test Receiver		KH3939

List of the main test equipment

0.1 Schematic

10/16/2012 Copyright © 2012 by O₂Micro NOT FOR PUBLIC RELEASE

0.2 BOM List

	Quantity	Designator	Description
1	1	CX1	10nF / 630V / X7R/ Radial / By Murata
2	1	CX2	22nF / 630V / X7R/ Radial / By Murata
3	1	C1	33nF / 630V / X7R/ Radial / By Murata
4	1	C2	220nF / 630V /X7R / Radial / By Murata
5	1	C3	1nF / 25V / X7R / 0603 / By Murata
6	1	C4	220nF / 25V / X7R / 0603 / By Murata
7	1	C5	10uF / 35V / X7R / 1210 / By Murata
8	1	C6	220uF / 100V / Aluminum Electrolytic
9	1	D1	MB6S / 0.5A, 600V / SOIC-4 / Bridge Rectifier
10	1	D2	RSFJL / 0.5A, 600V / Sub SMA / Fast Recovery Rectifier
11	1	D3	MURS260 / 2A, 600V / SMB / Fast Recovery Rectifier
12	2	L1 ,L3	2.2mH / Radial Leaded Wire Wound Inductor / By Wurth
13	1	Q1	STD3NK60 / 2.4A, 600V / TO-251
14	2	R1, R18	5.6Kohm / 5% / 0805
15	3	R3,R12,R16	430Kohm / 5% / 0805
16	1	R4	1.2ohm / 1% / 0805
17	1	R6	68Kohm / 5% / 0603
18	1	R7	4.7ohm / 5% / 0805
19	1	R8	10ohm / 5% / 0805
20	1	R9	39Kohm / 1% / 0805
21	1	R10	43Kohm / 1% / 0805
22	1	R11	47Kohm / 5% / 1206
23	1	T1	0.83mH / EFD15 / PC40
24	1	U1	OZ8022T / O2micro / SOP8
			Conclusion: Total 28 components

1. Efficiency

Change Vin from 90Vac to 264Vac based on variable LED load, measure the efficiency.

$$EFF_{LED}, [\%] = \frac{V_{LED} \times I_{LED}}{P_{IN}} \times 100\%$$

		90Vac	110Vac	135Vac	175Vac	220Vac	264Vac	
	Pin, [W]	11.560	11.550	11.540	11.580	11.640	11.720	
$\Delta D = 240 m V$	V_{LED} , [V]	53.530	53.420	53.330	53.260	53.200	53.160	
ADJ=240IIIV	I _{LED} , [mA]	195.4	197.4	198.5	199.3	199.7	199.9	
	EFF _{LED} , [%]	90.48%	91.30%	91.73%	91.66%	91.27%	90.67%	
	Pin, [W]	4.537	4.585	4.644	4.725	4.820	4.902	
$\Delta D = 100 m V$	V_{LED} , [V]	49.620	49.670	49.700	49.730	49.750	49.760	
ADJ=100IIIV	I _{LED} , [mA]	84.0	84.5	85.0	85.2	85.4	85.4	
	EFF _{LED} , [%]	91.87%	91.54%	90.97%	89.67%	88.15%	86.69%	
	Pin, [W]	1.507	1.540	1.582	1.622	1.675	1.735	
ADJ=30mV	V_{LED} , [V]	47.030	47.100	47.140	47.190	47.210	47.240	
	I _{LED} , [mA]	27.6	27.9	28.1	28.1	28.1	28.2	
	EFF _{LED} , [%]	86.16%	85.30%	83.61%	81.75%	79.28%	76.65%	

2. LED Current Accuracy vs. Vin

Change Vin from 90Vac to 264Vac based on variable LED load, measure the LED current.

ACC,[%] =
$$\frac{I_{LED} - I_{LED_{220Vac}}}{I_{LED_{220Vac}}} \times 100\%$$

		90Vac	110Vac	135Vac	175Vac	220Vac	264Vac
ADJ=240mV	I _{LED} , [mA]	195.4	197.4	198.5	199.3	199.7	199.9
	Acc, [%]	-2.15%	-1.15%	-0.60%	-0.20%	0.00%	0.10%
	I _{LED} , [mA]	84.0	84.5	85.0	85.2	85.4	85.4
ADJ=100mV	Acc, [%]	-1.64%	-1.05%	-0.47%	-0.23%	0.00%	0.00%
ADJ=30mV	ILED, [mA]	27.6	27.9	28.1	28.1	28.1	28.2
	Acc, [%]	-1.85%	-0.85%	-0.25%	-0.11%	0.00%	0.07%

3. Power Factor and THD Test

Change Vin from 90Vac to 264Vac based on variable LED load, measure the power factor.

	Line Frequency [H-]	Power Factor					
viri, [vac]	Line Frequency, [HZ]	ADJ=240mV	ADJ=100mV	ADJ=30mV			
90	60	0.968	0.966	0.882			
100	60	0.976	0.960	0.852			
110	60	0.981	0.956	0.838			
115	60	0.982	0.954	0.826			
120	60	0.983	0.951	0.822			
130	60	0.984	0.945	0.796			
140	60	0.982	0.936	0.772			
150	60	0.979	0.926	0.764			
160	60	0.976	0.916	0.743			
170	60	0.973	0.904	0.717			
180	50	0.973	0.900	0.722			
190	50	0.969	0.890	0.712			
200	50	0.966	0.880	0.703			
210	50	0.962	0.873	0.684			
220	50	0.958	0.865	0.673			
230	50	0.953	0.854	0.667			
240	50	0.949	0.843	0.659			
250	50	0.944	0.836	0.648			
260	50	0.940	0.825	0.638			
264	50	0.938	0.821	0.636			

Vin, [Vac]	Line Frequency [Hz]			
	Line Frequency, [HZ]	ADJ=240mV	ADJ=100mV	ADJ=30mV
90	60	25.554%	23.864%	38.445%
110	60	18.351%	22.579%	35.312%
220	50	16.548%	25.117%	46.502%
264	50	19.197%	28.677%	48.503%

IEC Harr (Ed2.0	monics Mode)	Uov I ov	er:= = er:= =					YOKOGAWA 🔶
PLL	U1	Or.	I1 [A]	hdf[%]	Or.	I1 [A]	hdf[%]	Element1
Freq	59.943 Hz	Tot.	131.424m		dc	-0.023m	-0.018	U1 300v
•		1	127.332m	100.000	2	0.042m	0.033	I1 200mA
U1	90.017 V	3	26.901m	21.127	4	0.004m	0.003	
11	131.424mA	5	16.944m	13.307	6	0.012m	0.010	Element2
Р1	11.4481 W	7	3.327m	2.613	8	0.026m	0.020	U2 1000V
S1	11.4618 VA	9	3.282m	2.578	10	0.003m	0.003	12 30A
Q1	-0.5606 var	11	3.866m	3.036	12	0.010m	0.008	
አ1	0.99880	13	1.855m	1.457	14	0.004m	0.003	
¢1 D	2.804 °	15	0.525m	0.412	16	0.031m	0.025	
Uthd1	0.056 %	17	1.424m	1.119	18	0.034m	0.027	
Ithd1	25.554 %	19	1.429m	1.123	20	0.025m	0.020	
Pthd1	0.002 %	21	0.355m	0.279	22	0.008m	0.006	
Uthf1 -		23	0.733m	0.576	24	0.035m	0.028	
Ithf1 -		25	0.969m	0.761	26	0.077m	0.061	
Utif1 -		27	0.588m	0.462	28	0.068m	0.053	
Itif1 -		29	0.410m	0.322	30	0.033m	0.026	
		31	0.686m	0.539	32	0.022m	0.017	
		33	0.426m	0.335	34	0.079m	0.062	
		35	0.245m	0.192	36	0.102m	0.080	
		37	0.434m	0.341	38	0.078m	0.061	
		39	0.355m	0.279	40	0.040m	0.031	
▲PAGE	1/4					△PAG	E⊽ 1⁄3	
Indato	66				20.	12/10/15 1	6.41.02	
	001/	~~			~ 20		0.41.07 > OF	40/
⊢ıg-2:	: 90Vac,	601	HZ, AD	J=24	Um	V, IHL)=25.	554%.

4. LED Ripple Current

Change Vin from 90Vac to 264Vac based on LED load, measure the LED ripple current.

I _{LED} Ripple,[mA]	90Vac	110Vac	220Vac	264Vac
ADJ=240mV	108	104	102	100
ADJ=100mV	36	37	39	38
ADJ=30mV	10.4	10.8	10.8	10

5. Dimming Function Testing

Change Vin from 90Vac to 264Vac based on variable LED load, test dimming function.

6. Turn-on Characteristics

Change Vin from 90Vac to 264Vac based on rated (ADJ=240mV) LED load, measure the turn-on delay time and the output peak current.

Note: 1. Delay time: The interval from system turned-on to when the LED string is lightened.

ADJ=240mV	90Vac	110Vac	220Vac	264Vac
Delay time, [ms]	288	218	135	130
I _{LED} peak, [mA]	244	240	242	240

7. Turn-off Characteristics

Change Vin from 90Vac to 264Vac based on rated (ADJ=240mV) LED load, measure the output peak current.

8. Open LED (OVP) Protection

Open the LED string during normal operation, measure the OVP threshold and input power.

9. All of the LED Short Protection (SCP)

Short the output during normal operation.

Fig-18: SCP, 220Vac, Ch1-V_{OUT}, Ch3-I_{LED}

10. Conducted EMI Test

EMI TEST REPORT

Fig-19: Conducted EMI Test at Line, 110Vac, 60Hz and EN55015 Limits

EMI TEST REPORT

Organization Place: Detector: Limit: Remark:	: O2MICRO CD PK+AV EN55015	Operator: Time: 20 Test-time(ms): 30 Transductor(PK/A	012/10/15/16:39 0 V): PK-1 / AV-1	EUT: Test equipment:l SN: 1139237	KH3939
Start(MHz) 0.009 0.150 2.000 10.000		End(MHz) 0.150 2.000 10.000 30.000		Step(MHz) 0.001 0.002 0.010 0.025	freq, step
dBu¥					scan result
120 110 90 80 70 60 50 40 30 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0					
0.01 0.009 MHz	0.05 0.10	0.50	1.00 5.	.00 10.00 30.000	MHz

Fig-20: Conducted EMI Test at Neutral, 110Vac, 60Hz and EN55015 Limits

Γ

EMI TEST REPORT

Organizati Place: Detector: Limit: Remark:	on: O2MICRO CD PK+AV EN55015	Operator: Time: Test-time(ms): Transductor(PK)	2012/10/15/16:19 30 /AVJ: PK-1 / AV-1	EUT: Test equipment:Kl SN: 1139237	parameter 13939
Start(MHz) 0.009 0.150 2.000 10.000	I	End(MHz) 0.150 2.000 10.000 30.000		Step(MHz) 0.001 0.002 0.010 0.025	freq, step
dBuV 120 110 90 80 70 60 50 40 30 20 10 0 -10 0.01 0.009 MHz	0.05 0.10	0.50	1.00	5.00 10.00 30.000 M	
(QP)	freq(MHz) 21.928	lev(dBuV) 49.9	Lim(dBu¥) 60.0	∆(lev-Lim -10.1	final test]

Fig-21: Conducted EMI Test at Line, 220Vac, 50Hz and EN55015 Limits

EMI TEST REPORT

Organization: 02MICRO Place: CD Detector: PK+AV Limit: EN55015 Remark:		Operator: Time: Test-time(ms Transductor(l	Operator: Time: 2012/10/15/16:23 Test-time(ms): 30 Transductor(PK/AV): PK-1 / AV-1		EUT: Test equipment:KH3939 SN: 1139237	
Start(MH 0.009 0.150 2.000 10.000	łz]	End(MHz) 0.150 2.000 10.000 30.000		Step(MHz) 0.001 0.002 0.010 0.025	···· freq, step	
dBuV 120 110 90 80 70 60 50 40 30 20 10 0 -10 0.009 M	0.05 (Hz	0.10 0.5	0 1.00	5.00 10.00		
(QP)	freq(MHz) 1.133 21.987	le∨(dBuV) 45.5 49.6	Lim(dBu¥) 56.0 60.0	∆(lev-L -10.5 -10.4	····· final test .im)	

Fig-22: Conducted EMI Test at Neutral, 220Vac, 50Hz and EN55015 Limits

Demo Board Disclaimer Notice

O2Micro International Ltd, and its subsidiaries, ("O2Micro") provides the enclosed product(s) and information subject to the following terms and conditions ("Terms") to its current and potential customers, partners or other persons or representatives receiving the products covered hereunder (collectively referred to as "User").

- 1. The demonstration board(s)/kit(s) provided herewith (collectively referred to as "Demo Board") are provided to User on a non-exclusive basis for ENGINEERING, DEVELOPMENT, DEMONSTRATION, AND/OR EVALUATION PURPOSES ONLY. Transfer or resale of the Demo Board to any other party is expressly prohibited. Acceptance of the Demo Board is subject to these Terms. If User does not agree with the Terms, or if the Demo Board does not meet the specifications recited in any supporting documentation (including related datasheets), User must promptly notify O2Micro, or immediately return the Demo Board to O2Micro. User may not sublicense, rent, lease, or assign the obligations of these Terms without O2Micro's express written authorization.
- 2. The Demo Board is not intended to be used for commercial use. As such, the Demo Board may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
- 3. O2Micro reserves the right to make corrections, modifications, enhancements, improvements, and other changes to the Demo Board at any time. O2Micro reserves the right to discontinue production, distribution or support of such without notice. Users should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
- 4. The Demo Board is provided "as is" and with no express or implied warranties, representations or conditions of merchantability, quality, and fitness for a particular purpose relating to O2Micro's products, services, and/or related products that O2Micro and it customers and partners may provide. Without limitation, no warranty is given that the Demo Board is error-free, free of defects, or regulatory compliant and/or agency certified (FCC, UL, CE, etc.). O2Micro products, including the Demo Board, are neither designed nor intended for use in medical or life critical applications or environments. All such warranties and representations, whether expressed or implied, are hereby excluded. O2Micro disclaims any liability or responsibility arising from any claim that User's access to or use of the Demo Board and/or related products infringes any third party's intellectual property rights.
- 5. Except where mandated by government requirements, testing of all parameters of each Demo Board is not necessarily performed. O2Micro assumes no liability for applications assistance or User's product designs. Users are responsible for their products and applications using the Demo Board and any other O2Micro components. To minimize the risks associated with User's products and applications, User should provide adequate design and operating safeguards.
- 6. Use of the Demo Board in any high risk activities where damage or injury to persons, property, environment or business may result if an error occurs. The User expressly assumes all risk for such use, and hold O2Micro harmless for any such use. The User assumes all responsibility and liability for proper and safe handling of the Demo Board. Due to possible open construction of the Demo Board, it is the User's responsibility to take any and all appropriate precautions with regard to electrostatic discharge and any other technical or legal concerns. User may not reverse engineer or decompile the Demo Board, or any components thereof.
- 7. User represent that it has all necessary expertise in the legal, safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and use of the Demo Board therewith. User warrants that its use of the Demo Board is for lawful business purposes, and does not violate any third party's intellectual property or other rule of law, applicable customs

requirements or other relevant regulation or legislation. Further, the User shall indemnify O2MICRO from all claims, costs and damages arising from the handling or use of the Demo Board. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR O2MICRO SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

- 8. Under no circumstances does O2Micro grant any license to User (or any other third party) under any patent right, trademark, copyright, mask work, design right, or any other intellectual property right of O2Micro covering or relating to the Demo Board or any machine, process, or combination in which such O2Micro products or services might be or are used.
- 9. Reproduction of any O2Micro information or datasheets is permissible only upon express written approval by O2Micro, and such reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. O2Micro considers unauthorized reproduction of this information with alteration is an unfair and deceptive business practice, and O2Micro is not responsible or liable for such altered documentation.
- 10. For additional information, contact O2Micro at the following address:

O2Micro 3118 Patrick Henry Drive Santa Clara, CA 95054