

FEB-FL7733MY-C-1

12W LED Lighting Power for Bulb Application

Rev. 1.0

Contents

1.	Disclaimer & Warning	.P2
2.	General Introduction & Spec	.P4
3.	Functional Test Report	.P6
4.	Photograph ,Schematic and Layout	.P15
5.	BOM	.P17
6.	Transformer	.P18

FEBxxx-001 1. Disclaimer and Warning. Instituted by Steel.Huang

1. Disclaimer

Fairchild Semiconductor Limited ("Fairchild") provides these design services as a benefit to our customers. Fairchild has made a good faith attempt to build for the specifications provided or needed by the customer. Fairchild provides this product "as is" and without "recourse" and MAKES NO WARRANTY, EXPRESSED, IMPLIED OR OTHERWISE, INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Customer agrees to do its own testing of any Fairchild design in order to ensure design meets the customer needs. Neither Fairchild nor Customer shall be liable for incidental or consequential damages, including but not limited to, the cost of labor, re-qualifications, rework charges, delay, lost profits, or loss of goodwill arising out of the sale, installation or use of any Fairchild product.

Fairchild will defend any suit or proceeding brought against Customer if it is based on a claim that any of its products infringes any U.S., Canadian, Japanese, EU or EFTA member country intellectual property right. Fairchild must be notified promptly in writing and given full and complete authority, information and assistance (at Fairchild's expense) for defense of the suit. Fairchild will pay damages and costs therein awarded against Customer but shall not be responsible for any compromise made without its consent. In no event shall Fairchild's liability for such damages and costs (including legal costs) exceed the contractual value of the goods or services that are the subject of the lawsuit. In providing such defense, or in the event that such product is held to constitute infringement and the use of the product is enjoined, Fairchild, in its discretion, shall procure the right to continue using such product, or modify it so that it becomes non-infringing, or remove it and grant Customer a credit for the depreciated value thereof. Fairchild's indemnity does not extend to claims of infringement arising from Fairchild's compliance with Buyer's design, specifications and/or instructions, or use of any product in combination with other products or in connection with a manufacturing or other process. The foregoing remedy is exclusive and constitutes Fairchild's sole obligation for any claim of intellectual property infringement.

All solutions, designs, schematics, drawings, boards or other information provided by Fairchild to Customer are confidential and provided for Customer's own use. Customer may not share any Fairchild materials with other semiconductor suppliers.

FEBxxx-001 1. Disclaimer and Warning. Instituted by Steel.Huang

2. Warning

This Evaluation Board may employ high voltages so appropriate safety precautions should be used when operating this board. Replace components on the Evaluation Board only with those parts shown on the BOM. Contact an authorized Fairchild representative with any questions...

FEBxxx-001 2. General Introduction and Spec. Instituted by Steel.Huang

1. General Introduction

This document is an engineering report describing a 12W LED Lighting Power for Bulb application, which using Fairchild's latest LED device FL7733MY, it could meet customer's high PF, low THD request, and the Circuitry is very simple.

The highly integrated FL7733MY provides several features to enhance the performance. The single stage topology with PSR could implement best performance and cost using fewest external components, In order to implement high PF and low THD, Constant on time is utilized with an external capacitor, connected to COMI.

Precise constant-current control regulates accurate output current versus changes in input voltage and output voltage. The operational frequency is proportionally changed by the output voltage to guarantee DCM operation. FL7733MY have several protections to enhance the device's performance. Such as Open LED Protection, Short LED Protection; Sense Resistor Short Protection, Cycle by cycle current limit and Over-temperature Protection etc.

FL7733MY also has frequency hopping function in the oscillator for better EMI performance.FL7733MY controller is available in 8-pin SOP.

.

EERvvv_001	2. General Introduction and Spec.	Instituted by	Steel.Huang
FEDXXX-UU I	2. General introduction and Spec.	Instituted by	Steel.Huang

2. General Specification

Specification	Min	Тур.	Max	Units
Input				
Voltage	90	100-240	264	Vac
Frequency	47		63	Hz
Output				
Voltage	20	24	28	V
Current		0.5		Α
PF	0.9			
THD			15	%

FEBxxx-001	3. Functional Check Re	port	Instituted by	Steel.Huang

Test Model	FEB-FL7733MY-C-1
Test Date	Feb. 18, 2014
Test Temperature	Ambient
Test Equipment	AC source:Chroma 61502 Load: PRODIGIT 3331A Dual DC Electronic Load Current/Voltage meter:Tektronix TCP202 Oscilloscope: Tektronix TDS3034B EMI conductive tester: KHC KH3935 PF/THD Tester: Chroma Power Analyzer 6630 Power Meter: WT210
Test Items	1 PF and THD. 2 Efficiency 3 Constant Current Test 4 No Load Test 5 Start-up Test 6 Normal Operation Test 7 Overshoot Test 8 Output Short Test 9 EMI Test 10 Thermal Test

FEBxxx-001 3. Functional Check Report

Instituted by

Steel.Huang

1 PF and THD

1.1 Test condition

Measure the power board PF&THD in 90, 115, 230, 264VAC; With Electronic load.

1.2 Test Result

1.2 Test Nesult				
PF/THD	90Vac	115Vac	230Vac	264Vac
28V	0.998 / 3.78%	0.996 / 3.67%	0.954 / 6.19%	0.927 / 8.02%
26V	0.998 / 3.97%	0.995 / 3.85%	0.948 / 6.68%	0.918 / 9.18%
24V	0.998 / 3.60%	0.995 / 3.13%	0.941 / 7.34%	0.906 / 9.77%
22V	0.998 / 2.84%	0.994 / 3.15%	0.932 / 7.71%	0.895 / 10.38%
20V	0.997 / 2.55%	0.993 / 3.11%	0.921 / 8.43%	0.881 / 11.41%
18V	0.997 / 2.55%	0.992 / 2.71%	0.908 / 9.37%	0.862 / 12.60%
16V	0.996 / 2.47%	0.990 / 2.95%	0.891 / 10.45%	0.840 / 14.12%
14V	0.995 / 2.22%	0.988 / 2.93%	0.869 / 12.04%	0.811 / 16.01%
12V	0.933 / 2.35%	0.984 / 3.10%	0.839 / 14.01%	0.775 / 18.22%

2 Efficiency

2.1 Test condition

Measure the Efficiency of the Power board in 90,115,230,264Vac with Electronic load.

2.2 Tested waveform

Efficiency	90Vac	115Vac	230Vac	264Vac
28V	86.34%	87.89%	89.33%	89.22%
26V	86.44%	87.91%	89.26%	88.99%
24V	86.34%	87.80%	89.02%	88.78%
22V	86.25%	87.50%	88.76%	88.59%
20V	86.11%	87.31%	88.31%	88.14%
18V	85.81%	86.80%	87.77%	87.77%
16V	85.34%	86.21%	87.25%	86.89%
14V	84.61%	85.50%	86.42%	86.14%
12V	83.66%	84.30%	85.10%	84.98%

3 Constant Current Test

3.1 Test condition

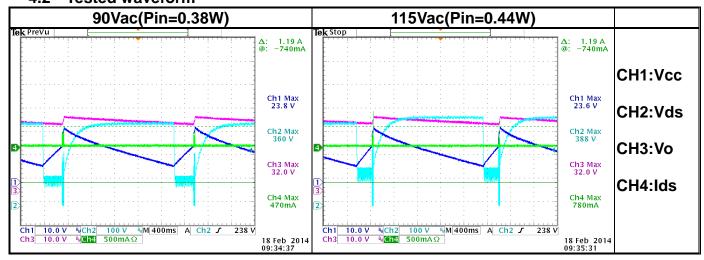
Measure the Constant Current Performance of the Power in 90,115,230,264Vac with Electronic load.

FEBxxx-001 3. Functional Check Report

Instituted by

Steel.Huang

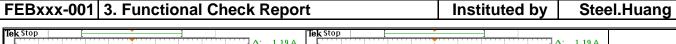
3.2 Test result

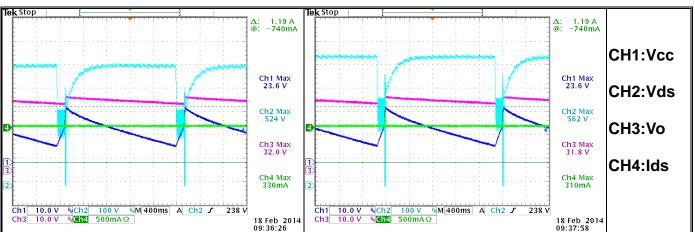

СС	90Vac	115Vac	230Vac	264Vac	Accuracy
28V	0.504A	0.505A	0.509A	0.510A	/+2%
26V	0.502A	0.505A	0.510A	0.511A	/+2.2%
24V	0.503A	0.505A	0.510A	0.512A	/+2.4%
22V	0.503A	0.505A	0.510A	0.512A	/+2.4%
20V	0.503A	0.505A	0.510A	0.512A	/+2.4%
18V	0.503A	0.504A	0.510A	0.512A	/+2.4%
16V	0.502A	0.504A	0.509A	0.511A	/+2.2%
14V	0.501A	0.502A	0.507A	0.508A	/+1.6%
12V	0.499A	0.501A	0.505A	0.506A	-0.2%/+1.2%
Accuracy	-0.2%/+0.8%	/+1%	/+2%	/+2.4%	

4 No Load Test

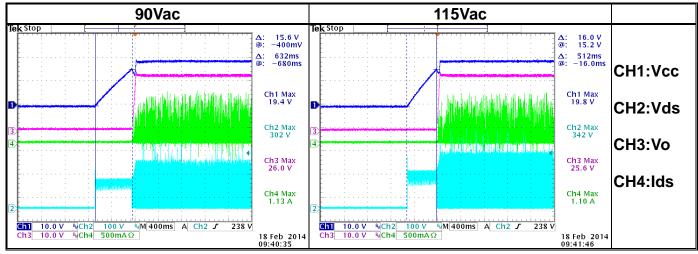
4.1 Test condition

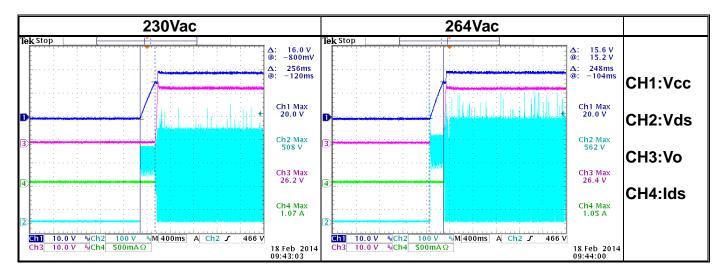
Measure the Power operation waveform at no load in 90,115,230,264Vac with Electronic load


4.2 Tested waveform



230Vac(Pin=0.53W)	264Vac(Pin=0.59W)




Start-up Test

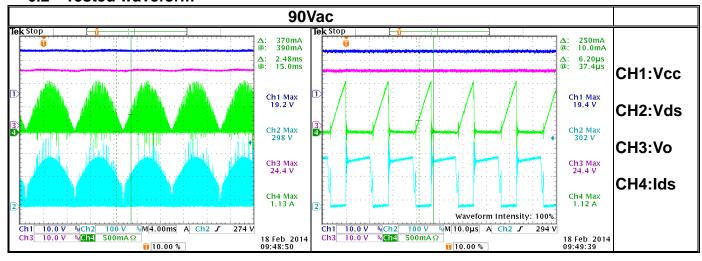
Test condition

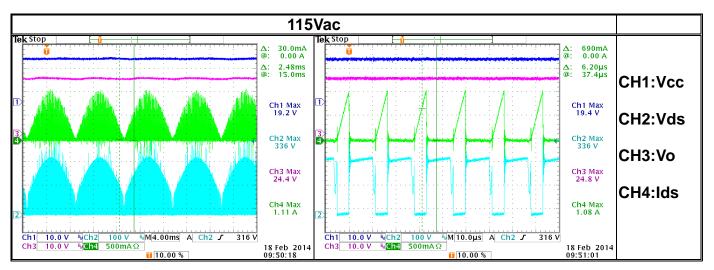
Measure the Start-up waveform in 90,115,230V,264Vac,with Electronic load @full load

Tested waveform

FEBxxx-001 3. Functional Check Report

Instituted by

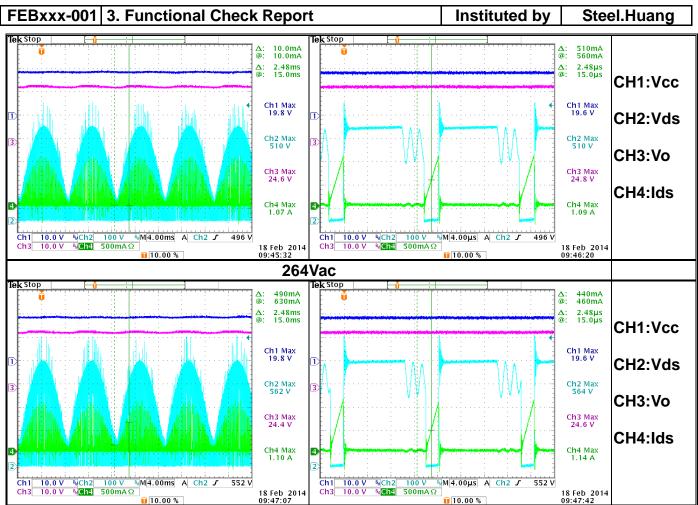

Steel.Huang


6 Normal Operation Test

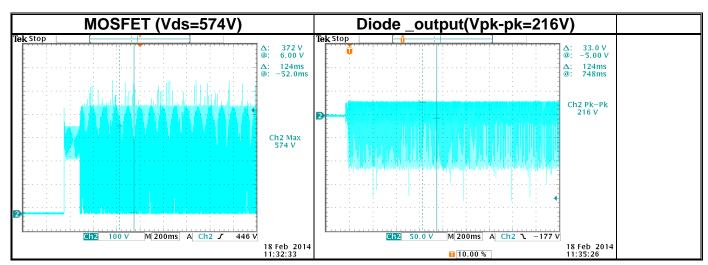
6.1 Test condition

Measure the Normal Operation waveform in 90,115,230V,264Vac,with Electronic load @full load

6.2 Tested waveform



230Vac



7 Overshoot Test

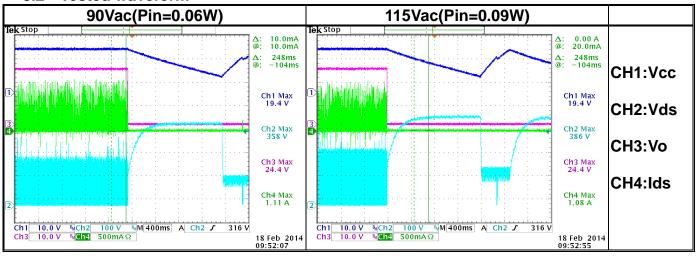
7.1 Test condition

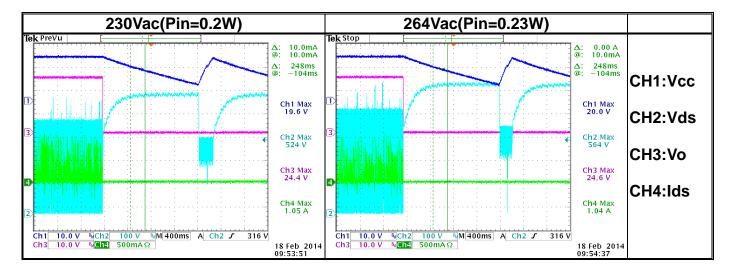
Measure the MOSFET and Diode Overshoot voltage in 264Vac and output is 28V full Load

7.2 Tested waveform

FEBxxx-001 3. Functional Check Report

Instituted by


Steel.Huang


8 Output Short Protection Test

8.1 Test condition

Measure the Output Short Protection waveform and the Input Watt in 90,115,230, 264Vac.

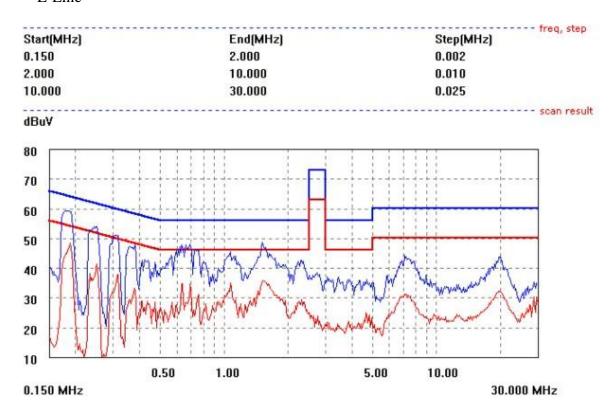
8.2 Tested waveform

9 EMI Test

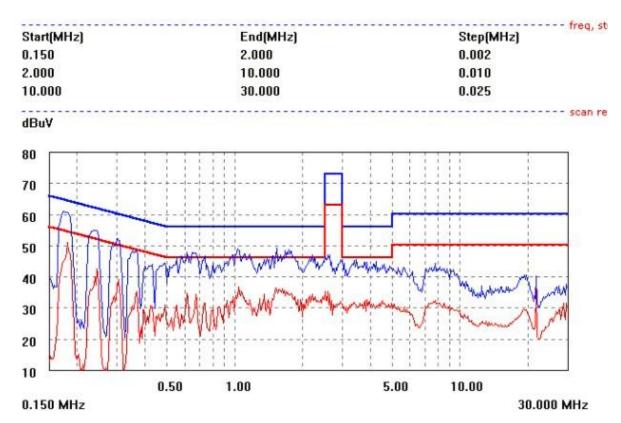
9.1 Test condition

Measure the Conduction emission of the Power with real LED Load

9.2 Tested waveform



FEBxxx-001 3. Functional Check Report


Instituted by

Steel.Huang

L-Line

N-Line

FEBxxx-001 3. Functional Check Report Instituted by Steel.Huang

10 Thermal Test

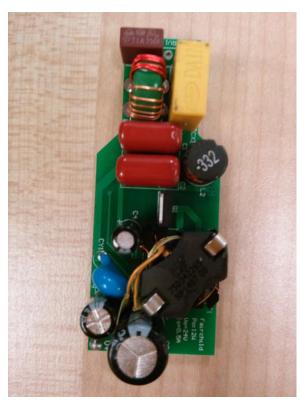
10.1 Test condition

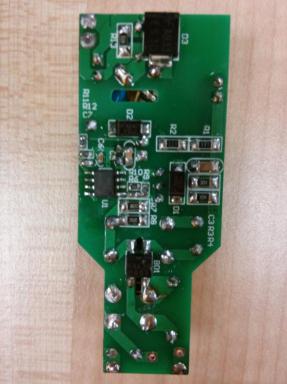
Measure the main component's temperature under 90Vac and 264Vac @full load

10.2 Test Result

	Transformer	MOSFET	Diode-output
90Vac	63.1℃	61.5℃	45°C
264Vac	60.6℃	59.3℃	44.8℃

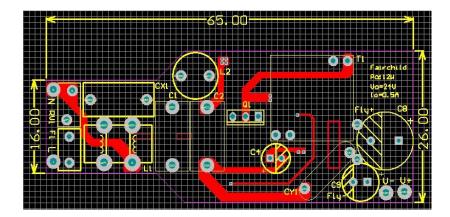
Remark: Test under ambient temperature, the real temperature is $22.5\,^{\circ}$ C

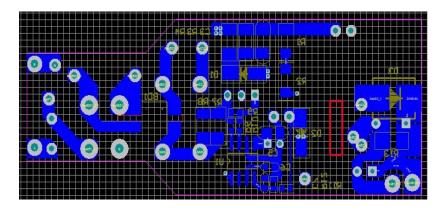




FEBxxx-001 4. Protograph, Schematic and Layout

Instituted by


Steel.Huang

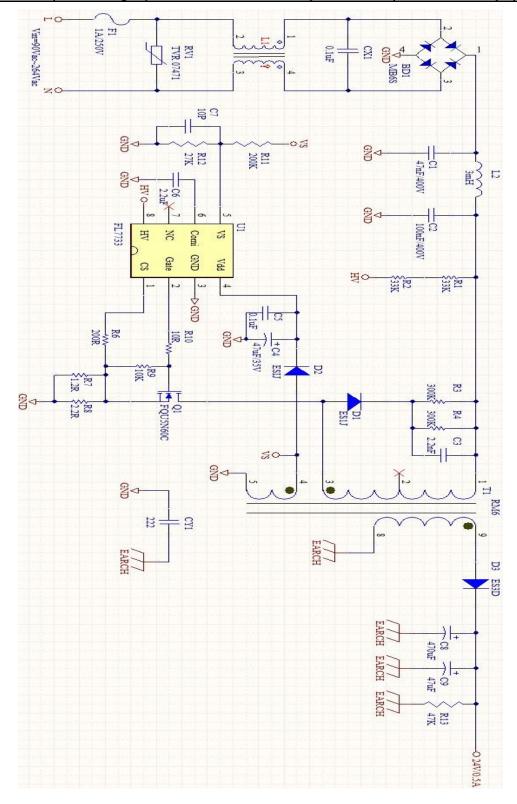


Toper Layer

Bottom Layer

Top layer

Bottom layer



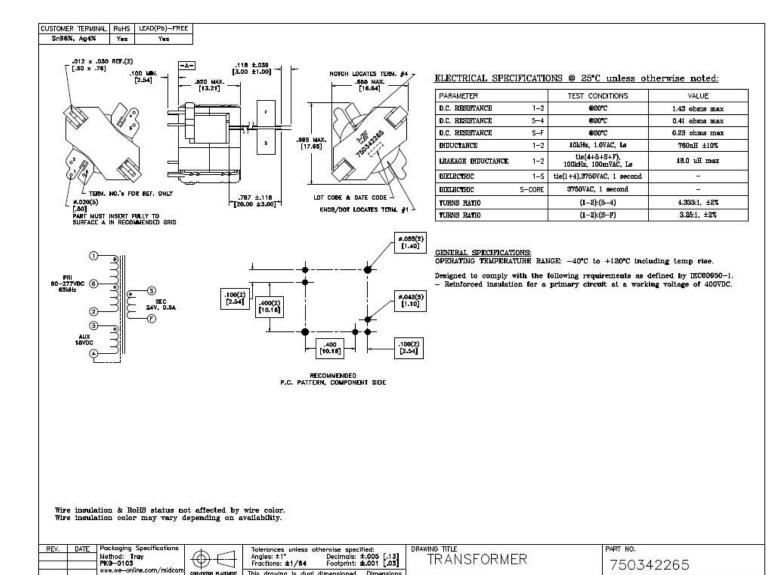
FEBxxx-001 4. Protograph, Schematic and Layout

Instituted by

Steel.Huang

FEBxxx-001 5. BOM Instituted by Steel.Huang

Designator	Value	Description	Footprint	Q'ty	Vendor
BD1	MB6S	Bridge	MB6S	1	Fairchild Semiconductor
U1	FL7733MY	Main control IC	SO8	1	Fairchild Semiconductor
Q1	FQU5N60C	N-Channel MOSFET	I-PAK	1	Fairchild Semiconductor
D1,D2	ES1J	Default Diode	DO214	2	Fairchild Semiconductor
D3	ES3D	Rectifier Diode	ES3D	1	Fairchild Semiconductor
T1	RM6	RM6 Transformer. PN:750342265	RM6	1	Wuerth Electronic
L2	3.3mH	Differential Inductor. PN:744772332	Inductance	1	Wuerth Electronic
RV1	TVR 07471	Vavistor. PN:820552711	MOV2	1	Wuerth Electronic
L1	850uH	Common chock,5*7	common chock	1	Universal component
C1	47nF/400V	Film Capacitor	Cf	1	Universal component
C2	100nF/400V	Film Capacitor	Cf	1	Universal component
С3	2.2nF/1KV	Capacitor-SMD	C1206_1	1	Universal component
C4	47uF/35V	Polarized Capacitor	CAP2/5	1	Universal component
C5	0.1uF	Capacitor-SMD	C0805_1	1	Universal component
C6	2.2uF	Capacitor-SMD	C0603	1	Universal component
C7	10P	Capacitor-SMD	C0603	1	Universal component
C8	470uF/35V	Polarized Capacitor	CAP 5/10	1	Universal component
C9	100uF/35V	Polarized Capacitor	CAP 5/10	1	Universal component
CX1	0.1uF/275Vac	X2 Capacitor	Cf2	1	Universal component
CY1	222	Y2 cap	Y-CAP	1	Universal component
R1, R2	33K	Resistor-SMD	R1206	2	Universal component
R3, R4	300K	Resistor-SMD	R1206	2	Universal component
R6	200R	Resistor-SMD	R0603	1	Universal component
R7	1.2R 1%	Resistor-SMD	R1206	1	Universal component
R8	2.2R 1%	Resistor-SMD	R1206	1	Universal component
R9	10K	Resistor-SMD	R0603	1	Universal component
R10	10R	Resistor-SMD	R0603	1	Universal component
R11	200K	Resistor-SMD	R0603	1	Universal component
R12	27K	Resistor-SMD	R0603	1	Universal component
R13	47K	Resistor-SMD	R1206	1	Universal component
F1	1A/250V	Fuse	FUSE	1	Universal component


FEBxxx-001 6. Transformer Instituted by Steel.Huang

1 Transformer specification

SEE REVISION SHEET FOR REVISION LEVEL

Manufacture: Wuerth Electronic

Part No.:750342265

This drawing is dual dimensioned. Dimensions in brackets are in millimeters.

SPECIFICATION SHEET 1 OF 1