
Applications Note:SY5802

Green Mode Flyback LED Driver With Primary Side Regulation, PFC and PWM/Linear Dimming **Preliminary datasheet**

General Description

The SY5802 is a single stage Flyback and PFC controller targeting at LED lighting applications with PWM/Analog dimming. It is a primary side controller without applying any secondary feedback circuit for low cost, and drives the Flyback converter in the quasiresonant mode to achieve higher efficiency. It keeps the Flyback converter in constant on time operation to achieve high power factor.

Ordering Information

Temperature Range: -40° C to 85° C

Ordering Number	Package type	Note
SY5802FBC	MSOP10	
SY5802FAC	SO8	

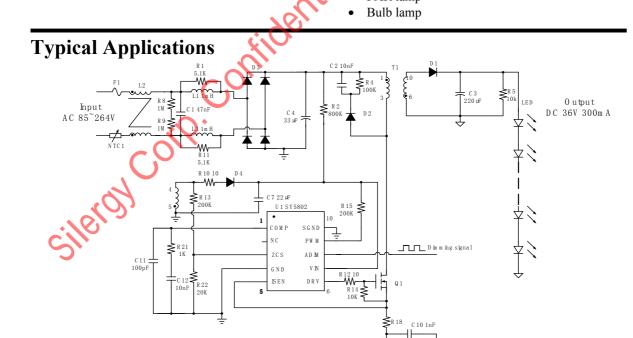
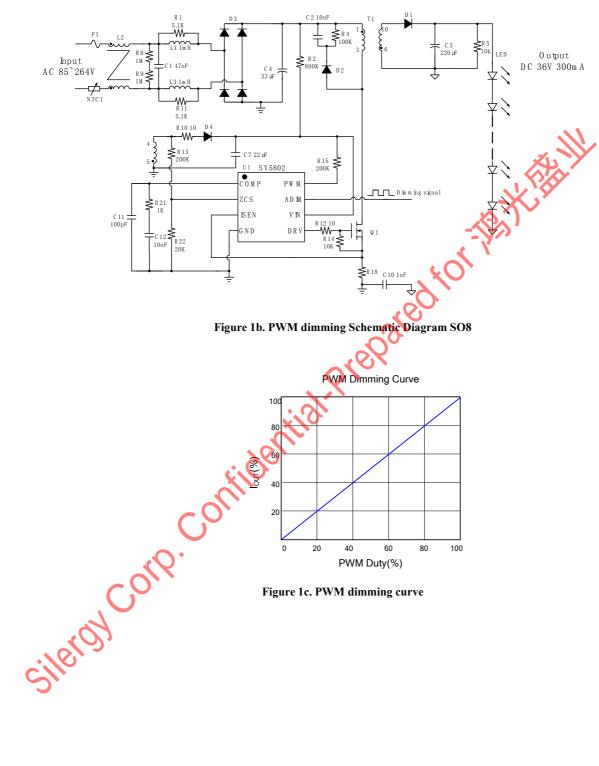
Features

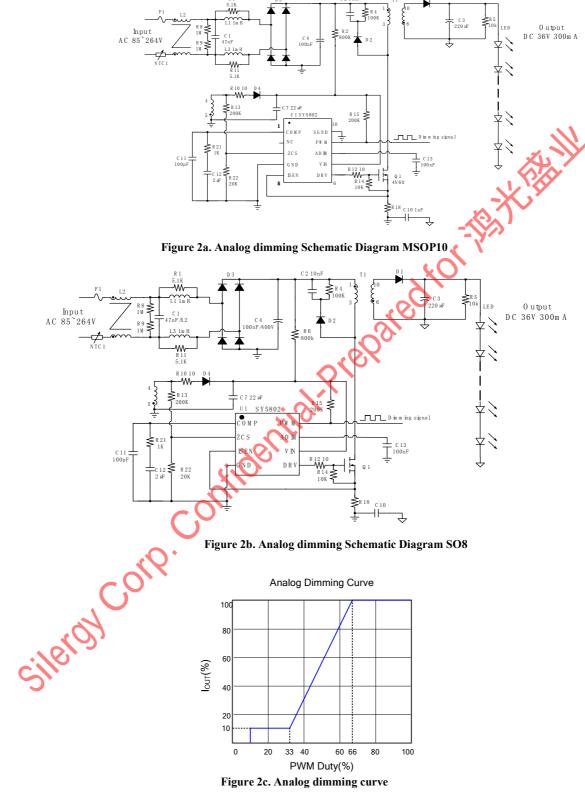
- Primary side control eliminates the opto-coupler.
- PWM or Analog Dimming. •
- Valley turn-on of the primary MOSFET to achieve low switching losses
- 0.3V primary current sense reference voltage leads to a lower sense resistance thus a lower conduction loss.
- Internal high current MOSFET driver: 1A sourcing and 2A sinking
- Low start up current: 15uAtypical
- Reliable short LED and Open LED protection
- Power factor >0.90 with single-stage conversion.(Analog dimming only)
- Compact package: MSOP10 and SO8

Applications

- LED lighting Down light
 - Tube lamp

 - PAR lamp

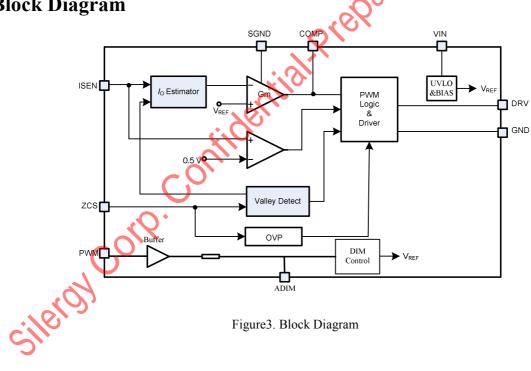




Figure 1a. PWM dimming Schematic Diagram MSOP10

3

Pinout (top view)

		ZCS 🗖 2			
		ISEN 🗖 3			
		GND 🗖 4			
		C	(SOP8) (MSOP10)		
	Ton	Mark• AFI	xyz (device code: AEJ, x=year code, y=week code, z= lot number code		
	Top		<i>Vxyz</i> (device code: ADW, <i>x=year code</i> , <i>y=week code</i> , <i>z= lot number code</i> , <i>y=week code</i> , <i>y=week code</i> , <i>z= lot number code</i> , <i>y=week code</i>		
Pin	Pin r	umber			
Name	SO8	MSOP10	Pin Description		
COMP	1	1	Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.		
			Inductor current zero-crossing detection pin. This pin receives the auxiliary		
			winding voltage by a resister divider and detects the inductor current zero crossing		
ZCS	2	3	point. This pin also provides over voltage protection and line regulation		
200	-	5	modification function simultaneously. If the roltage on this pin is above $V_{ZCS,OVP}$,		
			the IC would enter over voltage protection mode. Good line regulation can be		
			achieved by adjusting the upper resistor of the divider. Current sense pin. Connect this pin to the source of the primary switch. Connect		
			the sense resistor across the source of the primary switch and the GND pin.		
ISEN	3	5			
			(current sense resister R _S : R _S $k \frac{V_{REF} \times N_{PS}}{I_{OUT}}$, k=0.167)		
GND	4	4	Ground pin		
DRV	5	6	Gate driver pin. Connect this pin to the gate of primary MOSFET. Power supply pin. This pin also provides output over voltage protection along with		
VIN	6	7	ZCS pin.		
ADIM	7	8	Bypass this pin to GND with enough capacitance to hold on internal voltage		
		_	reference		
PWM	8	9	PWM dimming input pin, this pin detects the PWM dimming signal		
SGND	-	10	Signal ground.		
			$\mathbf{\vee}$		
)*		
		C Q			
	•	\mathbf{O}			
	2				
	sileroy corp.				
	8,2				
C	N				
-5					


<

Absolute Maximum Ratings (Note 1)

VIN, DRV	
Supply Current I _{VIN}	30mA
ADIM, ZCS	V _{IN} +0.3V
ISEN, COMP, PWM	3.6V
Power Dissipation, @ TA = 25°C MSOP10/SO8	
Package Thermal Resistance (Note 2)	
MSOP10/SO8, θ JA	125°C/W /88°C/W
MSOP10/SO8, θ JC	60°C/W /45°C/W
Temperature Range	45°C to 150°C
Lead Temperature (Soldering 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C

Recommended Operating Conditions (Note 3)

VIN DRV	8V~15 4V
	40°C to 125°C
Junction Temperature Range	
Ambient Temperature Range	 40°C to 85°C

Block Diagram

Electrical Characteristics

 $(V_{IN} = 12V \text{ (Note 3)}, T_A = 25^{\circ}C \text{ unless otherwise specified)}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section	Byinoor	Test conditions	wini	ryp	WIUX	Onit
Input voltage range	V _{VIN}		8		15.4	V
VIN turn-on threshold	V _{VIN} ON				17.6	V V
VIN turn-off threshold	V _{VIN,OFF}		6.0		7.9	V
VIN OVP voltage	V _{VIN,OVP}			V _{VIN,ON} +0.85	XI.	V
Start up Current	I _{ST}	V _{VIN} <v<sub>VIN,OFF</v<sub>		15	55	μA
Operating Current	I _{VIN}	C _L =100pF,f=15kHz		1	Y	mA
Shunt current in OVP mode	I _{VIN,OVP}	V _{VIN} >V _{VIN,OVP}	1.6	2	2.5	mA
Error Amplifier Section						
Internal reference voltage	V _{REF}		0.294	0.3	0.306	V
Current Sense Section				<u>, , , , , , , , , , , , , , , , , , , </u>		
Current limit reference voltage	V _{ISEN,MAX}		<u> </u>	0.5		V
ZCS pin Section			~ ~ ~			
ZCS pin OVP voltage	V _{ZCS,OVP}			1.42		v
threshold	V ZCS,OVP			1.42		v
Gate Driver Section			-			
Gate driver voltage	V _{Gate}			V_{VIN}		V
Maximum source current	I _{SOURCE}			1		Α
Minimum sink current	I _{SINK}	X		2		Α
Max ON Time	T _{ON,MAX}	V _{COMP} =1.5V		24		μs
Min ON Time	T _{ON,MIN}			400		ns
Max OFF Time	T _{OFF,MAX}			39		μs
Min OFF Time	T _{OFF,MIN}			2		μs
Maximum switching frequency	f _{MAX}			120		kHz
Thermal Section						
Thermal Shutdown				150		°C
Temperature	T _{SD}			150		U
PWM function Section	\mathbf{O}					
PWM ON current	I _{PWM,ON}			20		μΑ
PWM OFF current 🍾	I _{PWM,OFF}			10		μΑ
PWM current Range	I _{ADIM}				1	mA

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}$ C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane. **Note 3**: Increase VIN pin voltage gradually higher than $V_{VIN,ON}$ voltage then turn down to 12V.

The SY5802 is a single stage Flyback and PFC controller targeting at LED lighting applications with PWM/Analog dimming.

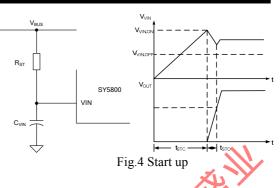
The Device provides primary side control to eliminate the opto-couplers or the secondary feedback circuits, which would cut down the cost of the system.

High power factor is achieved by constant on operation mode, with which the control scheme and the circuit structure are both simple.

SY5802 supports both PWM and Analog dimming function for different application.

In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the power MOSFET at voltage valley; the start up current of SY5802 is rather small (15μ A typically) to reduce the standby power loss further; the maximum switching frequency is clamped to 120kHz to reduce switching losses and improve EMI performance when the converter is operated at light load condition.

SY5802 provides reliable protections such as Short Circuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.


SY5802 is available with SO8 and MSOP10 package.

Applications Information

<u>Start up</u>

After AC supply or DC BUS is powered on, the capacitor C_{VIN} across VIN and GND pin is charged up by BUS voltage through a start up resistor R_{ST} . Once V_{VIN} rises up to V_{VIN-ON} , the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of Flyback transformer could supply enough energy to maintain V_{VIN} above $V_{VIN-OFF}$.

The whole start up procedure is divided into two sections shown in Fig.4. t_{STC} is the C_{VIN} charged up section, and t_{STO} is the output voltage built-up section. The start up time t_{ST} composes of t_{STC} and t_{STO} , and usually t_{STO} is much smaller than t_{STC} .

The start up resistor R_{ST} and C_{VIN} are designed by rules below:

(a) Preset start-up resistor R_{ST} , make sure that the current through R_{ST} is larger than I_{ST} and smaller than I_{VIN_OVP}

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{\text{VIN}} = \frac{\left(\frac{V_{\text{BUS}}}{R_{\text{ST}}} - I_{\text{ST}}\right) \times t_{\text{ST}}}{V_{\text{VIN}_{\text{ON}}}} (2)$$

(c) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} and decrease R_{ST} , go back to step (a) and redo such design flow until the ideal start up procedure is obtained.

Internal pre-charge design for quick start up

After V_{VIN} exceeds $V_{VIN,ON}$, V_{COMP} is pre-charged by an internal current source. The PWM block won't start to output PWM signals until V_{COMP} is over the initial voltage $V_{COMP,IC}$, which can be programmed by R_{COMP} . Such design is meant to reduce the start up time shown in Fig.2.

The voltage pre-charged V_{COMP_IC} in start-up procedure can be programmed by R_{COMP}

 $V_{\text{COMP IC}} = 600 \text{mV} - 300 \mu \text{A} \times R_{\text{COMP}}$ (3)

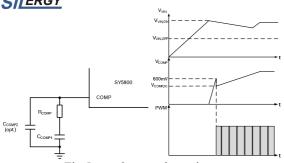


Fig.5 pre-charge scheme in start up Where $V_{COMP-IC}$ is the pre-charged voltage of COMP pin.

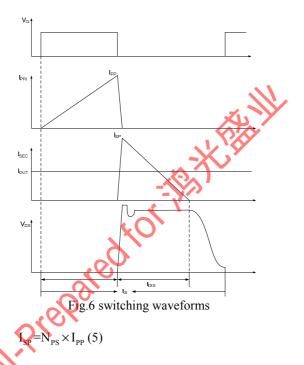
Generally, in Analog dimming mode, a big capacitance of C_{COMP} is necessary to achieve high power factor and stabilize the system loop (1 μ F~2 μ F recommended); in PWM dimming mode, a smaller capacitance of C_{COMP} is applied to achieve smaller output current ripple (10nF recommended);

The voltage pre-charged in start-up procedure can be programmed by R_{COMP} ; On the other hand, larger R_{COMP} can provide larger phase margin for the control loop; A small ceramic capacitor is added to suppress high frequency interruption (10pF~100pF is recommended if necessary)

Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of Flyback transformer can not supply enough energy to VIN pin, V_{VIN} will drop down. Once V_{VIN} is below $V_{VIN-OFF}$, the IC will stop working and V_{COMP} will be discharged to zero.

Primary-side constant-current control


Primary side control is applied to eliminate secondary feedback circuit or opto-coupler, which reduces the circuit cost. The switching waveforms are shown in Fig.6.

The output current I_{OUT} can be represented by,

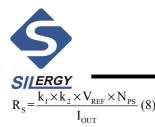
$$I_{OUT} = \frac{I_{SP}}{2} \times \frac{t_{DIS}}{t_{S}} (4)$$

Where I_{SP} is the peak current of the secondary side; t_{DIS} is the discharge time of Flyback transformer; t_S is the switching period.

SY5802

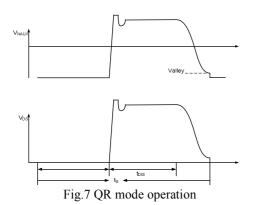
Where N_{PS} is the turns ratio of primary to secondary of the Flyback transformer.

Thus, I_{OUT} can be represented by

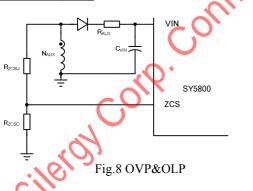

$$I_{OUT} = \frac{N_{PS} \times I_{PP}}{2} \times \frac{t_{DIS}}{t_s} (6)$$

The primary peak current I_{PP} and inductor current discharge time t_{DIS} can be detected by the IC, and the effect of the leakage inductor can be compensated by internal control scheme. I_{OUT} can be induced finally by

$$I_{OUT} = \frac{k_1 \times k_2 \times V_{REF} \times N_{PS}}{R_s} (7)$$

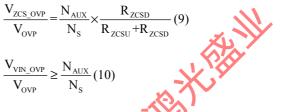

Where k_1 is the output current weight coefficient; k_2 is the output modification coefficient; V_{REF} is the internal reference voltage; R_S is the current sense resistor.

 k_1,k_2 and V_{REF} are all internal constant parameters, I_{OUT} can be programmed by N_{PS} and $R_S.$


Quasi-Resonant Operation

QR mode operation provides low turn-on switching losses for Flyback converter.

The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the Flyback transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage across drain and source of the primary MOSFET is at voltage valley, the MOSFET would be turned on.


Over Voltage Protection (OVP) & Open LED Protection (OLP)

The output voltage is reflected by the auxiliary winding voltage of the Flyback transformer, and both ZCS pin and VIN pin provide over voltage protection function. When the load is null or large transient happens, the output voltage will exceed the rated value. When V_{VIN} exceeds $V_{VIN,OVP}$ or V_{ZCS} exceeds $V_{ZCS,OVP}$, the over voltage protection is triggered and the IC will discharge V_{VIN} by an internal current source $I_{VIN,OVP}$. Once V_{VIN}

is below $V_{VIN,OFF}$, the IC will shut down and be charged again by BUS voltage through start up resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

Thus, the turns of the auxiliary winding N_{AUX} and the resistor divider is related with the OVP function.

Where V_{OVP} is the output over voltage specification; R_{ZCSU} and R_{ZCSD} compose the resistor divider. The turns ratio of N_S to N_{AUX} and the ratio of R_{ZCSU} to R_{ZCSD} could be induced from equation (9) and (10).

Short Circuit Protection (SCP)

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so V_{VIN} will drop down without auxiliary winding supply. Once V_{VIN} is below $V_{VIN,OFF}$, the IC will shut down and be charged again by the BUS voltage through the start up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.

In order to guarantee SCP function not effected by voltage spike of auxiliary winding, a filter resistor R_{AUX} is needed (10 Ω typically) shown in Fig.8.

Line regulation modification

The IC provides line regulation modification function to improve line regulation performance.

Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing input BUS line voltage. A small compensation voltage ΔV_{ISEN-C} is added to ISEN pin during ON time to improve such performance. This ΔV_{ISEN-C} is adjusted by the upper resistor of the divider connected to ZCS pin.

$$\Delta V_{\text{ISEN,C}} = V_{\text{BUS}} \times \frac{N_{\text{AUX}}}{N_{\text{P}}} \times \frac{1}{R_{\text{ZCSU}}} \times k_{3} (11)$$

Where R_{ZCSU} is the upper resistor of the divider; k3 is an internal constant as the modification coefficient.

The compensation is mainly related with R_{ZCSU} , larger compensation is achieved with smaller R_{ZCSU} . Normally, R_{ZCS} ranges from $100k\Omega \sim 1M\Omega$.

Then R_{ZCSD} can be selected by,

$$\frac{\frac{V_{zCS_{OVP}}}{V_{OUT}} \times \frac{N_{s}}{N_{AUX}}}{1 - \frac{V_{zCS_{OVP}}}{V_{OUT}} \times \frac{N_{s}}{N_{AUX}}} \times R_{zCSU} > R_{zCSD} (12),$$
And,
$$R_{zCSD} \ge \frac{\frac{V_{zCS_{OVP}}}{V_{OVP}} \times \frac{N_{s}}{N_{AUX}}}{1 - \frac{V_{zCS_{OVP}}}{V_{CS_{OVP}}} \times \frac{N_{s}}{N_{s}}} \times R_{zCSU} (13)$$

 $1 - \frac{V_{2CS_{OVP}}}{V_{OVP}} \times \frac{W_{S}}{N_{AUX}}$

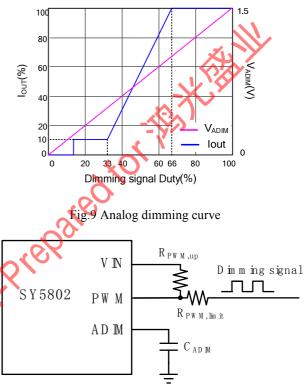
Where V_{OVP} is the output over voltage protection specification; V_{OUT} is the rated output voltage; R_{ZCSU} is the upper resistor of the divider; N_S and N_{AUX} are the turns of secondary winding and auxiliary winding separately.

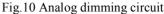
Dimming Mode

SY5802 supports two dimming modes: PWM dimming and analog dimming. The dimming signal is given as PWM waveform and the output current is a function of the duty cycle of the dimming signal.

Analog Dimming Mode

In Analog dimming mode, the dimming signal is delivered to PWM pin. PWM pin detects PWM signal by the current through this pm.


When the current is higher than $I_{PWM,ON}$, the dimming signal is sensed logic high, and ADIM pin is pulled up to 1.5V by a 300kQ resistor. When the current is lower than $I_{PWM,OFF}$, the dimming signal is sensed as logic low, and ADIM pin is pulled down to GND by a 300kQ resistor. The duty cycle of the dimming signal D_{DIM} is reflected by the voltage on ADIM pin V_{ADIM}.


$$V_{\text{ADIM}} = D_{DIM} \times 1.5V (14)$$

When V_{ADIM} is lower than 0.25V(D_{DIM} is 17%), the output current is zero; When V_{ADIM} is from $V_{ADIM,ON}$ to 0.5V (D_{DIM} is from 17% to 33%), the output current is 10% of rated output current; When V_{ADIM} is higher than 1V (D_{DIM} is over 66%), the output current is 100%

of rated output current; When V_{ADIM} is in the range from 0.5V to 1V (D_{DIM} is from 33% to 66%), I_{OUT} increases with D_{DIM} linearly from 10% to 100% of rated output current.

The dimming curve between output current I_{OUT} , V_{ADIM} and duty cycle of dimming signal is shown as below.

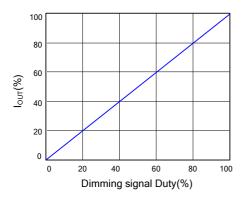
Hence, the resistor $R_{PWM,limit}$ connected between PWM pin and dimming signal is limited by the current threshold of PWM pin. V_{DimH} is logic high level of the Dimming signal, V_{DimL} is logic low level of the Dimming signal.

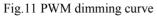
$$\frac{V_{\text{DimL}}}{R_{\text{PWM,limit}}} < I_{\text{PWM,OFF}} (15)$$
$$I_{\text{PWM}} > \frac{V_{\text{DimH}}}{R_{\text{PWM,limit}}} > I_{\text{PWM,ON}} (16)$$

And a resistor $R_{PWM,up}$ needs to be connected across PWM and VIN pin, which is designed by

$$R_{PWM,up} < \frac{V_{VIN,OFF}}{I_{PWM,ON}} (17)$$

A capacitor C_{ADIM} needs to be connected across ADIM and GND pin to obtain a smooth voltage waveform


proportional to the dimming signal duty cycle. C_{ADIM} is selected by


$$C_{ADIM} = \frac{1.25 \times 10^{-5}}{f_{DIM}} F \cdot Hz \ (18)$$

Where f_{DIM} is frequency of the PWM dimming signal.

PWM Dimming Mode

In PWM dimming mode, the output current is chopped by the dimming signal directly, the dimming function is shown as below.

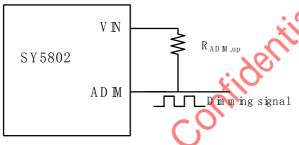


Fig.12 PWM dimming circuit

In PWM dimming mode, the dimming signal is supplied to ADIM pin. The logic voltage level of the Dimming signal is limited by

$$V_{VIN} > V_{DimH} > 1V (19)$$
$$V_{DimL} < V_{ADIM,ON} (20)$$

Where V_{DimH} is logic high level of the dimming signal, V_{DimH} is logic low level of the dimming signal.

And a resistor $R_{ADIM,UP}$ needs to be connected across ADIM and VIN pin (1M Ω recommeded).

Power Device Design 1.Power Device Design for Analog Dimming

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;

$$V_{\text{MOS}_DS_MAX} = \sqrt{2} V_{\text{AC}_MAX} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_F}) + \Delta V_{\text{S}} (21)$$
$$V_{\text{D}_R_MAX} = \frac{\sqrt{2} V_{\text{AC}_MAX}}{N_{\text{PS}}} + V_{\text{OUT}} (22)$$

Where $V_{AC,MAX}$ is maximum input AC RMS voltage; N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the rated output voltage; V_{DF} is the forward voltage of secondary power diode; ΔV_S is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

$$I_{MOS_{PK_MAX}} = I_{P_{PK_MAX}} (23)$$
$$I_{MOS_{PK_MAX}} = I_{P_{RMS_MAX}} (24)$$
$$I_{D_{PK_MAX}} = N_{PS} \times I_{P_{PK_MAX}} (25)$$
$$I_{D_{PAVG}} = I_{OUT} (26)$$

Where $I_{P-PK-MAX}$ and $I_{P-RMS-MAX}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer (N_{PS} and L_M)

 N_{PS} is limited by the electrical stress of the power MOSFET:

$$N_{PS} \le \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D F}}$$
(27)

Where $V_{MOS,(BR)DS}$ is the breakdown voltage of the power MOSFET.

In Quasi-Resonant mode, each switching period cycle t_s consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 shown in

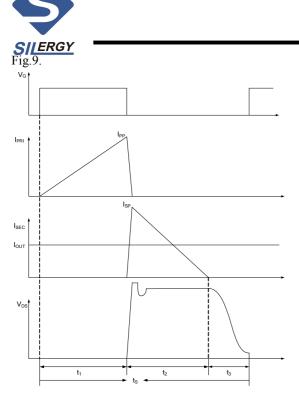


Fig.9 switching waveforms

The system operates in the constant on time mode to achieve high power factor. The ON time increases with the input AC RMS voltage decreasing and the load increasing. When the operation condition is with minimum input AC RMS voltage and full load, the ON time is maximized. On the other hand, when the input voltage is at the peak value, the OFF time is maximized. Thus, the minimum switching frequency for the peak value of input voltage with minimum input AC RMS voltage and maximum load condition; Meanwhile, the maximum peak current through MOSFET and the transformer happens.

Once the minimum frequency f_{S-MIN} is set, the inductance of the transformer could be induced. The design flow is shown as below:

(a)Select N_{PS}
N_{PS}
$$\times$$
 90%- $\sqrt{2}V_{AC_MAX}$ - ΔV_S
 V_{OUT} + V_{D_F} (28)

(b) Preset minimum frequency f_{S-MIN}

(c) Compute relative t_S , t_1 (t_3 is omitted to simplify the design here)

$$t_{\rm s} = \frac{1}{f_{\rm s_MIN}} (29)$$

(d) Design inductance
$$L_M$$

 $L_M = \frac{V_{AC_MIN}^2 \times t_1^2 \times \eta}{2P_{OUT} \times t_S}$ (31)
(e) Compute t_3
 $t_3 = \pi \times \sqrt{L_M \times C_{Drain}}$ (32)
Where C_{Drain} is the parasitic capacitance at drain of MOSFET.
(f) Compute primary maximum peak current $I_{P-PK-MAX}$ and RMS current I_{P-RMS_MAX} for the transformer fabrication.
 $I_{P_PFK_MAX} = \frac{2P_{OUT} \times \left[\frac{L_M}{\sqrt{2}V_{AC_MIN}} + \frac{L_M}{N_{PS} \times (V_{OUT} + V_{D_F})}\right]}{L_M \times \eta}$

 $t_{1} = \frac{t_{S} \times N_{PS} \times (V_{OUT} + V_{D_{-}F})}{\sqrt{2} V_{AC_{-}MIN} + N_{PS} \times (V_{OUT} + V_{D_{-}F})} (30)$

(33) Where η is the efficiency; P_{OUT} is rated full load power

Adjust t_1 and t_s to t_1' and t_s' considering the effect of t_3 $t' = \frac{\eta \times L_M \times I_{P_PK_MAX}^2}{\eta}$ (34)

$$t_{1}^{\prime} = \frac{L_{M} \times I_{P_{P}PK_{MAX}}}{\sqrt{2}V_{AC_{MIN}}} (35)$$
$$I_{P_{RMS_{MAX}}} \approx \sqrt{\frac{t_{1}^{\prime}}{6t_{S}^{\prime}}} \times I_{P_{P}K_{MAX}} (36)$$

(g) Compute secondary maximum peak current $I_{S\text{-}PK\text{-}MAX}$ and RMS current $I_{S\text{-}RMS\text{-}MAX}$ for the transformer fabrication.

$$I_{S_{PK_{MAX}}} = N_{PS} \times I_{P_{PK_{MAX}}}(37)$$

$$t'_{2} = t'_{s} - t'_{1} - t_{3} (38)$$
$$I_{s_{RMS}MAX} \approx \sqrt{\frac{t'_{2}}{6t'_{s}}} \times I_{s_{PK}MAX} (39)$$

Transformer design (N_P,N_S,N_{AUX})

The design of the transformer is similar with ordinary Flyback transformer. the parameters below are necessary:

Necessary parameters	
Turns ratio	N _{PS}
Inductance	L _M
Primary maximum current	I _{P-PK-MAX}
Primary maximum RMS current	I _{P-RMS-MAX}
Secondary maximum RMS current	I _{S-RMS-MAX}

The design rules are as followed:

(a) Select the magnetic core style, identify the effective area $A_{e_{\cdot}}$

(b) Preset the maximum magnetic flux ΔB

ΔB=0.22~0.26T

(c) Compute primary turn N_P

$$N_{p} = \frac{L_{M} \times I_{P_{P} \times MAX}}{\Delta B \times A_{e}} (40)$$

(d) Compute secondary turn N_S

$$N_{s} = \frac{N_{P}}{N_{PS}} (41)$$

(e) compute auxiliary turn N_{AUX}

$$N_{AUX} = N_S \times \frac{V_{VIN}}{V_{OUT}}$$
 (42)

Where V_{VIN} is the working voltage of VIN pin (10V~11V is recommended).

(f) Select an appropriate wire diameter

With $I_{PRMS-MAX}$ and $I_{S-RMS-MAX}$, select appropriate wire to make sure the current density ranges from $4A/mm^2$ to $10A/mm^2$.

(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor COUT

Preset the output current ripple $\Delta I_{OUT},\,C_{OUT}$ is induced by

$$C_{\rm OUT} = \frac{\sqrt{(\frac{2I_{\rm OUT}}{\Delta I_{\rm OUT}})^2 - 1}}{4\pi f_{\rm AC} R_{\rm LED}} (43)$$

Where I_{OUT} is the rated output current; ΔI_{OUT} is the demanded current ripple; f_{AC} is the input AC supply frequency; R_{LED} is the equivalent series resistor of the LED load.

<u>RCD snubber for MOSFE</u>

The power loss of the snubber P_{RCD} is evaluated first

$$P_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} \vee V_{\text{D}_{-}F}) + \Delta V_{\text{S}}}{\Delta V_{\text{S}}} \times \frac{L_{\text{K}}}{L_{\text{M}}} \times P_{\text{OUT}}$$
(44)

Where N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the output voltage; V_{D-F} is the forward voltage of the power diode; ΔV_S is the overshoot voltage clamped by RCD snubber; L_K is the leakage inductor; L_M is the inductance of the Flyback transformer; P_{OUT} is the output power.

The R_{RCD} is related with the power loss:

$$R_{\rm RCD} = \frac{(N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_{\rm F}}) + \Delta V_{\rm S})^2}{P_{\rm RCD}} (45)$$

The C_{RCD} is related with the voltage ripple of the snubber $\Delta V_{\text{C-RCD}}$:

$$C_{\rm RCD} = \frac{N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_{\perp}F}) + \Delta V_{\rm S}}{R_{\rm RCD} f_{\rm S} \Delta V_{\rm C RCD}}$$
(46)

2. Power Device Design for PWM Dimming

Input BUS Capacitor (C_{BUS})

The input BUS capacitor is selected by

$$C_{BUS} = P_{IN} \times \frac{\arcsin(1 - \Delta V_{IN}) + \frac{\pi}{2}}{\pi \times f_{IN} \times (\sqrt{2} \times V_{AC,MIN})^2 \left[1 - (1 - \Delta V_{IN})^2\right]}$$
(47)

Where P_{IN} is the input power, $V_{AC,MIN}$ is the minimum input AC voltage, f_{in} is the input AC frequency, $\triangle V_{IN}$ is the input voltage ripple ratio.

As general engineering application, the input BUS Capacitor can also be selected simply by $C_{RUS} = P_{IN} \times (2 \sim 3) \mu F / W$ (48)

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;

$$V_{MOS_{DS_{MAX}}} = \sqrt{2} V_{AC_{MAX}} + N_{PS} \times (V_{OUT} + V_{D_{F}}) + \Delta V_{S} (49)$$
$$V_{D_{R_{MAX}}} = \frac{\sqrt{2} V_{AC_{MAX}}}{N_{PS}} + V_{OUT} (50)$$

Where $V_{AC,MAX}$ is maximum input AC RMS voltage; N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the rated output voltage; V_{D,F} is the forward voltage of secondary power diode; ΔV_S is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

 $I_{MOS_{PK_{MAX}}} = I_{P_{PK_{MAX}}} (51)$ $I_{MOS_{RMS_{MAX}}} = I_{P_{RMS_{MAX}}} (52)$ $I_{D_{PK_{MAX}}} = N_{PS} \times I_{P_{PK_{MAX}}} (53)$ $I_{D_{AVG}} = I_{OUT} (54)$

Where I_{P-PK-MAX} and I_{P-RMS-MAX} are maximum primary peak current and RMS current, which will be introduced later.

Transformer (N_{PS} and L_M)

 N_{PS} is limited by the electrical stress of the power MOSFET

$$N_{PS} \leq \frac{V_{MOS_{(BR)DS}} \times 90\% - \sqrt{2}V_{AC_{MAX}} - \Delta V_{S}}{V_{OUT} + V_{D F}} (55)$$

Where $V_{MOS,(BR)DS}$ is the breakdown voltage of the power MOSFET.

In Quasi-Resonant mode, each switching period cycle t_s consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 shown in Fig.9.

SY5802

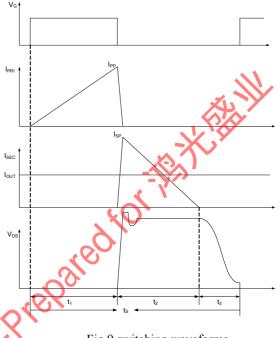


Fig.9 switching waveforms

Once the minimum frequency f_{S-MIN} is set, the inductance of the transformer could be induced. The design flow is shown as below:

(a)Select N_{PS}

$$N_{pS} \le \frac{V_{MOS_{(BR)DS}} \times 90\% - \sqrt{2}V_{AC_{MAX}} - \Delta V_{S}}{V_{OUT} + V_{D_{F}}}$$
(56)

(b) Preset minimum frequency f_{S-MIN}

(c) Compute relative t_S , t_1 (t_3 is omitted to simplify the design here)

$$t_{s} = \frac{1}{f_{s_{MIN}}} (57)$$

$$t_{1} = \frac{t_{s} \times N_{PS} \times (V_{OUT} + V_{D_{-}F})}{\sqrt{2} V_{AC_{-MIN}} + N_{PS} \times (V_{OUT} + V_{D_{-}F})} (58)$$

(d) Design inductance L_M

$$L_{\rm M} = \frac{V_{\rm AC_MIN}^2 \times t_1^2 \times \eta}{2P_{\rm OUT} \times t_{\rm S}} (59)$$

(e) Compute t₃

SY5802

 $t_3 = \pi \times \sqrt{L_M \times C_{Drain}}$ (60)

Where C_{Drain} is the parasitic capacitance at drain of MOSFET.

(f) Compute primary maximum peak current $I_{P\text{-}PK\text{-}MAX}$ and RMS current $I_{P\text{-}RMS\text{-}MAX}$ for the transformer fabrication.

$$I_{P_{PK_{MAX}}} = \frac{P_{OUT} \times \left[\frac{L_{M}}{\sqrt{2}V_{AC_{MIN}}} + \frac{L_{M}}{N_{PS} \times (V_{OUT} + V_{D_{F}})}\right]}{L_{M} \times \eta}$$

$$+ \frac{\sqrt{P_{OUT}^{2} \times \left[\frac{L_{M}}{\sqrt{2}V_{AC_{MIN}}} + \frac{L_{M}}{N_{PS} \times (V_{OUT} + V_{D_{F}})}\right]^{2} + L_{M} \times \eta \times P_{OUT} \times t_{3}}}{L_{M} \times \eta}$$
(61)

Where η is the efficiency; P_{OUT} is rated full load power

Adjust t_1 and t_s to t_1 ' and t_s ' considering the effect of t_3

$$t'_{s} = \frac{\eta \times L_{M} \times I_{P_PK_MAX}^{2}}{2P_{OUT}} (62)$$

$$t_{1}^{\prime} = \frac{L_{M} \times I_{P_{P} K_{MAX}}}{\sqrt{2} V_{AC_{MIN}}} (63)$$

$$I_{P_RMS_MAX} \approx \sqrt{\frac{t_1'}{3t_S'}} \times I_{P_PK_MAX} (64)$$

(g) Compute secondary maximum peak current $I_{S-PK-MAX}$ and RMS current $I_{S-RMS-MAX}$ for the transformer fabrication.

$$I_{S_{PK}MAX} = N_{PS} \times I_{P_{PK}MAX} (65)$$

$$t'_{2} = t'_{S} \cdot t'_{1} \cdot t_{3} (66)$$

$$I_{S_{RMS}MAX} \approx \sqrt{\frac{t'_{2}}{3t'_{S}}} \times I_{S_{PK}MAX} (67)$$

<u>Transformer design (N_P,N_S,N_{AUX})</u>

The design of the transformer is similar with ordinary Flyback transformer. the parameters below are necessary:

Necessary parameters	
Turns ratio	N _{PS}
Inductance	L _M

Primary maximum current	I _{P-PK-MAX}
Primary maximum RMS current	I _{P-RMS-MAX}
Secondary maximum RMS current	I _{S-RMS-MAX}

The design rules are as followed:

(a) Select the magnetic core style, identify the effective area $A_{e_{\cdot}}$

(b) Preset the maximum magnetic flux ΔB

ΔB=0.22~0.26T

(c) Compute primary turn N_P

$$N_{p} = \frac{L_{M} \times I_{P_{P}K_{MAX}}}{\Delta B \times A_{e}} (68)$$

(d) Compute secondary turn N_s

$$N_{\rm S} = \frac{N_{\rm P}}{N_{\rm PS}} (69)$$

(e) compute auxiliary turn N_{AUX}

$$N_{AUX} = N_{S} \times \frac{V_{VIN}}{V_{OUT}} (70)$$

Where V_{VIN} is the working voltage of VIN pin (10V~11V is recommended).

(f) Select an appropriate wire diameter

With $I_{P-RMS-MAX}$ and $I_{S-RMS-MAX}$, select appropriate wire to make sure the current density ranges from $4A/mm^2$ to $10A/mm^2$.

(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor Cout

Generally, the output voltage ripple is up to the ESR of the output capacitor $C_{\mbox{\scriptsize OUT}}.$

Preset the output current ripple, C_{OUT} is induced by

$$R_{\text{Cout,ESR}} = \frac{\Delta V_{OUT}}{I_{\text{S}_{PK}_{MAX}}} (71)$$

Where R_{Cout,ESR} is the ESR of C_{OUT}.

RCD snubber for MOSFET

The power loss of the snubber P_{RCD} is evaluated first

$$P_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_{\text{F}}}) + \Delta V_{\text{S}}}{\Delta V_{\text{S}}} \times \frac{L_{\text{K}}}{L_{\text{M}}} \times P_{\text{OUT}}$$
(72)

Where N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the output voltage; $V_{D\text{-}F}$ is the forward voltage of the power diode; ΔV_S is the overshoot voltage clamped by RCD snubber; L_K is the leakage inductor; L_M is the inductance of the Flyback transformer; P_{OUT} is the output power.

The R_{RCD} is related with the power loss:

$$R_{\rm RCD} = \frac{(N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_{\rm F}}) + \Delta V_{\rm S})^2}{P_{\rm RCD}} (73)$$

The C_{RCD} is related with the voltage ripple of the snubber ΔV_{C-RCD} :

$$C_{\rm RCD} = \frac{N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_{\perp}F}) + \Delta V_{\rm S}}{R_{\rm RCD} f_{\rm S} \Delta V_{\rm C_{\perp}RCD}}$$
(74)

Layout

(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.

(b) The ground of the BUS line capacitor, the ground of the current sample resistor and the signal ground of the IC should be connected in a star connection.

(c) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.

(d) The wire connected to ISEN and DRV should be as thick as possible

(e) The resistor divider is recommended to be put beside the IC.

Design Example

A design example of typical application is shown below step by step.

1. Analog dimming design Example #1. Identify design specification

Design Specification			
V _{AC} (RMS)	90V~264V	V _{OUT}	38V
I _{OUT}	320mA	η	87%

I _{OUT}	320mA	η	87%
#2. Transformer design	(N_{PS}, L_M)		
Refer to Power Device I	Design		-W Pitter
Conditions			
V _{AC,MIN}	90V	V _{AC-MAX}	264V -
$\triangle V_S$	50V	V _{MOS-(BR)DS}	600V
P _{OUT}	12W	V _{D,F}	1 V
C _{Drain}	100pF	0	75kHz
(a)Compute turns ratio N $N_{PS} \leq \frac{V_{MOS_{(BR)DS}} \times 90\%}{V_{OUT}}$ $= \frac{600V \times 0.9 \cdot \sqrt{2} \times 2}{38V + 1V}$ $= 2.99$	V_{PS} first $-\sqrt{2}V_{AC_MAX} - \Delta V_S$ $+V_{D,F}$ 264V - 50V	ts-MIN	
N _{PS} is set to			
N _{PS} =2.67	Alle		
(b) $f_{S,MIN}$ is preset	CO.		
$f_{S_{MIN}} = 75 kHz$	·18.		

$$N_{PS} \le \frac{V_{MOS_{(BR)DS}} \times 90\% - \sqrt{2}V_{AC_{MAX}} - \Delta V_{S}}{V_{OUT} + V_{D,F}}$$
$$= \frac{600V \times 0.9 - \sqrt{2} \times 264V - 50V}{38V + 1V}$$
$$= 2.99$$

$$N_{PS} = 2.67$$

(c) Compute the switching period t_s and ON time t_1 at the peak of input voltage.

$$t_{s} = \frac{1}{f_{s_{MIN}}} = 13.3 \mu s$$

$$t_{1} = \frac{1}{\sqrt{2}V_{AC_{MIN}} + N_{PS} \times (V_{OUT} + V_{D_{F}})}$$

$$= \frac{13.3 \mu s \times 2.67 \times (38V + 1V)}{\sqrt{2} \times 90V + 2.67 \times (38V + 1V)}$$

$$= 6 \mu s$$

(d) Compute the inductance L_M

$$SILERGY$$

$$L_{M} = \frac{V_{AC_{MIN}}^{2} \times t_{1}^{2} \times \eta}{2P_{OUT} \times t_{s}}$$

$$= \frac{90V^{2} \times 6\mu s^{2} \times 0.87}{2 \times 12W \times 13.3\mu s}$$

$$= 780\mu H$$

Set

L_M=750µH

(e) Compute the quasi-resonant time t₃

$$t_{3} = \pi \times \sqrt{L_{M} \times C_{Drain}}$$
$$= \pi \times \sqrt{750 \mu H \times 100 pF}$$
$$= 860 ns$$

(f) Compute primary maximum peak current $I_{P-PK-MAX}$

Set

$$I_{x_{M}} = 750 \mu H$$
(e) Compute the quasi-resonant time t₃

$$t_{3} = \pi \times \sqrt{T_{50} \mu H \times 100 pF} = 860 ns$$
(f) Compute primary maximum peak current I_{P-PK-MAX}

$$I_{P,PK,MAX} = \frac{2P_{out} \times \left[\frac{L_{M}}{\sqrt{2}V_{AC,MN}} + \frac{L_{M}}{N_{PS} \times (V_{out} + V_{D,F})}\right]}{L_{M} \times \eta} + \frac{\sqrt{4P_{out}^{2} \times \left[\frac{L_{M}}{\sqrt{2}V_{AC,MN}} + \frac{N_{PS} \times (V_{out} + V_{D,F})}{L_{M} \times \eta}\right]^{2} + 4L_{M} \times \eta \times P_{out} \times t_{3}}{L_{M} \times \eta} = 1.038 A$$
Adjust switching period t₃ and ON time t₁ to t(and t'_{1}.

$$t_{3}' = \frac{\eta \times L_{M} \times l_{P,PK,MAX}^{2}}{4 \times 12W} = 14.45 \mu s$$

$$t_{1}' = \frac{L_{M} \times l_{P,PK,MAX}}{\sqrt{2}V_{AC,MN}} = \frac{750 \mu H \times 1.038 A^{2}}{\sqrt{2}V_{AC,MN}} = \frac{750 \mu H \times 1.038 A}{\sqrt{2}V_{AC,MN}} = \frac{750 \mu H \times 1.038 A}{\sqrt{2}$$

Compute primary maximum RMS current IP-RMS-MAX

$$I_{P_{RMS_{MAX}}} \approx \sqrt{\frac{t'_{1}}{6t'_{s}}} \times I_{P_{PK_{MAX}}} = \sqrt{\frac{6.12\mu s}{6 \times 14.45\mu s}} \times 1.038 A = 0.289 A$$

Fight H

(g) Compute secondary maximum peak current and the maximum RMS current.

 $I_{S_{PK_{MAX}}} = N_{PS} \times I_{P_{PK_{MAX}}} = 2.67 \times 1.038A = 2.77A$

 $t'_2 = t'_s - t'_1 - t_3 = 14.45 \mu s - 6.12 \mu s - 0.86 \mu s = 7.47 \mu s$

$$I_{S,RMS,MAX} \approx \sqrt{\frac{t'_2}{6t'_S}} \times I_{S_{-}^{PK}MAX} = \sqrt{\frac{7.47\mu s}{6 \times 14.45\mu s}} \times 2.77A = 0.81A$$

#3. Select power MOSFET and secondary power diode

Refer to Power Device Design

Known conditio	ns at this step		
V _{AC-MAX}	264V	N _{PS}	2.67
V _{OUT}	36V	V _{D-F}	1V
ΔV_{S}	50V	η	87%
	voltage and the current st $V_{AC_MAX} + N_{PS} \times (V_{OUT} + V_D)$		ared
			\$ 0 °
$=\sqrt{2}$	$2 \times 264V + 2.67 \times (38V + 1V)$)+50V	U N
=52	7V		
I _{MOS_PK_MAX} =I _{P_P}	_{K_MAX} =1.038A	*ial	
$I_{MOS_{RMS_{MAX}}} = I_{P_{2}}$	_RMS_MAX = 0.289A	. Herri	
(b) Compute the	voltage and the current s	ress of secondary power d	liode

$$V_{MOS_{DS_{MAX}}} = \sqrt{2} V_{AC_{MAX}} + N_{PS} \times (V_{OUT} + V_{D_{F}}) + \Delta V_{S}$$

= $\sqrt{2} \times 264V + 2.67 \times (38V + 1V) + 50V$
= 527V

(b) Compute the voltage and the current stress of secondary power diode

$$V_{D_{P_{a}MAX}} = \frac{\sqrt{2}V_{AC_{MAX}}}{N_{PS}} + V_{OUT}$$

= $\frac{\sqrt{2} \times 264V}{2.67} + 38V$
= 178V
$$I_{D_{PK_{MAX}}} = N_{PS} \times I_{P_{PK_{MAX}}} = 2.67 \times 1.038A = 2.77A$$

$$I_{D_{AVG}} = I_{OUT} = 0.32A$$

#4. Select the output capacitor C_{OUT}

Refer to Power Device Design

Conditions			
I _{OUT}	320mA	ΔI_{OUT}	0.3I _{OUT}
f _{AC}	50Hz	R _{LED}	12×1.6Ω

The output capacitor is

$C_{\rm OUT} = \frac{\sqrt{\left(\frac{2I_{\rm OUT}}{\Delta I_{\rm OUT}}\right)^2 - 1}}{4\pi f_{\rm AC} R_{\rm LED}}$		x III
$=\frac{\sqrt{(\frac{2\times032A}{0.3\times0.32A})^{2}-1}}{4\pi\times50\text{Hz}\times12\times1.6\Omega}$ =546µF		
#5. Design RCD snubber		
Refer to Power Device Design	0	0
Conditions		<u> </u>
		50V
V _{OUT} 38V		
N _{PS} 2.67	L _K /L _M	1%
P _{OUT} 12W		
The power loss of the snubber is	i al l	
$P_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_{\text{F}}}) + \Delta V_{\text{S}}}{\Delta V_{\text{S}}} \times \frac{L_{\text{K}}}{L_{\text{M}}} \times P_{\text{OUT}}$ $= \frac{2.67 \times (38V + 1V) + 50V}{50V} \times 0.01 \times 12W$	jur.	
=0.37W		
The resistor of the snubber is		
$R_{RCD} = \frac{(N_{PS} \times (V_{OUT} + V_{DF}) + \Delta V_S)^2}{P_{RCD}}$		
$=\frac{(2.67\times(38V+1V)+50V)^2}{0.37W}$		
The capacitor of the snubber is		
$C_{RCD} = \frac{N_{PS} \times (V_{OUT} + V_{D_{-}F}) + \Delta V_{S}}{R_{RCD} f_{S} \Delta V_{C_{-}RCD}}$		
$=\frac{2.67 \times (38V+1V)+50V}{2}$		
$=$ $\frac{1}{64k\Omega \times 100kHz \times 25V}$		
=1nF		
-1111		

Refer to Start up

Conditions			
V _{BUS-MIN}	90V×1.414	V _{BUS-MAX}	264V×1.414
I _{ST}	15µA (typical)	V _{IN-ON}	16V (typical)
I _{VIN-OVP}	2mA (typical)	t _{ST}	500ms (designed by user)
(a) R_{ST} is preset $R_{ST} < \frac{V_{BUS}}{I_{ST}} = \frac{90V \times 1}{15\mu}$	414 A =8.48MΩ ,		264V×1.414 16V (typical) 500ms (designed by user)
$R_{\rm ST} > \frac{V_{\rm BUS}}{I_{\rm VIN_OVP}} = \frac{264}{2}$	$\frac{V \times 1.414}{2mA} = 186 k\Omega$		
Set R _{ST}			0
$R_{st} = 250k\Omega \times 3 = 750$)kΩ		ale
(b) Design C _{VIN}		ores	K
$C_{\rm VIN} = \frac{(\frac{V_{\rm BUS}}{R_{\rm ST}} - I_{\rm ST}) \times 1}{V_{\rm VIN_ON}}$	t _{st}	tialt	
	-15μA)×500ms 6V	Jel.	
Set C _{VIN}	CO.		
C_{VIN} =20 μ F	<u>~</u> (6.		
#7 Set COMP pin	50		
Refer to Internal pr	e-charge design for quick	<u>start up</u>	

$$R_{ST} < \frac{V_{BUS}}{I_{ST}} = \frac{90V \times 1.414}{15\mu A} = 8.48 M\Omega$$
,

$$R_{ST} > \frac{V_{BUS}}{I_{VIN_{OVP}}} = \frac{264V \times 1.414}{2mA} = 186k\Omega$$

$$C_{VIN} = \frac{(\frac{V_{BUS}}{R_{ST}} - I_{ST}) \times t_{ST}}{V_{VIN_ON}}$$

= $\frac{(\frac{90V \times 1.414}{750k\Omega} - 15\mu A) \times 500ms}{16V}$
= 4.83 \mu F

Parameters designed	ed		
R _{COMP}	500Ω	V _{COMP,IC}	450mV
C _{COMP1}	2µF	C _{COMP2}	100pF

#8 Set current sense resistor to achieve ideal output current

Refer to Primary-side constant-current control

Known conditions a	tt this step			
$k_1 \times k_2$	0.16	N _{PS}	2.67	
V _{REF}	0.3V	I _{OUT}	0.32A	
The current sense re	esistor is			
$R_{s} = \frac{k_{1} \times k_{2} \times V_{REF} \times I_{OUT}}{I_{OUT}}$	$\langle N_{PS} \rangle$			(The second seco
$=\frac{0.16\times0.3V\times2}{0.16\times0.3V\times2}$.67		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0.32A =0.4Ω				
#9 set ZCS pin			, for i	
Refer to Line regul	ation modification an	d Over Voltage Protectio	on (OVP) & Open Loop Prov	tection (OLP)

$$R_{s} = \frac{k_{1} \times k_{2} \times V_{REF} \times N_{PS}}{I_{OUT}}$$
$$= \frac{0.16 \times 0.3V \times 2.67}{0.32A}$$
$$= 0.4\Omega$$

Refer to Line regulation modification and Over Voltage Protection (OVP) & Open Loop Protection (OLP)

First identify R_{ZCSU} need for line regulation.

Known condition	ons at this step	792	
k ₃	68		
Parameters Des	signed		
R _{ZCSU}	100kΩ		
		XV	

Then compute R _{ZCSD}			
Conditions	X		
V _{ZCS OVP}	1.42V	V _{OVP}	48V
V _{OUT}	38V		
Parameters designed			
R _{ZCSU}	100kΩ		
N _S	21	N _{AUX}	5

$$R_{ZCSD} < \frac{\frac{V_{ZCS_OVP}}{V_{OUT}} \times \frac{N_s}{N_{AUX}}}{1 - \frac{V_{ZCS_OVP}}{V_{OUT}} \times \frac{N_s}{N_{AUX}}} \times R_{ZCSU}$$

$$= 18.62k\Omega$$

SILERGY			SY5	802
$R_{ZCSD} \ge \frac{\frac{V_{ZCS_{OVP}}}{V_{OVP}} \times \frac{N_{S}}{N_{AUX}}}{1 - \frac{V_{ZCS_{OVP}}}{V_{OVP}} \times \frac{N_{S}}{N_{AUX}}}$	$\frac{1}{3} \times R_{z_{CSU}}$			
$=\frac{\frac{1.42V}{48V}\times\frac{21}{5}}{1-\frac{1.42V}{48V}\times\frac{21}{5}}\times10$ $=14.19k\Omega$	00kΩ			
R_{ZCSD} is set to $R_{ZCSD} = 15k\Omega$,
#10 set ADIM and PWM Refer to <u>Analog Dimmin</u> Conditions			- 40 ⁽⁻ /	
V _{VIN,OFF}	6V	I _{PWM,ON}	20 µ A	
I _{PWM,OFF}	10 µ A	f _{Dim}	100Hz	
Parameters designed				
V _{Dim,high}	10V	, CO		
$\frac{V_{\text{Dim,high}}}{R_{\text{PWM,limit}}} < \frac{V_{\text{Dim,high}}}{I_{\text{PWM,ON}}} = \frac{10V}{20\mu}.$ $R_{\text{PWM, limit}} \text{ is set to}$	$\frac{1}{A} = 500K\Omega$	ntial-Prepa		
R _{PWM, limit} =50KΩ	Xe	ntlo.		
$R_{\rm PWM,up} < \frac{V_{\rm VIN,OFF}}{I_{\rm PWM,ON}} = \frac{6V}{20\mu A}$	= 300KΩ			
So $R_{PWM,up}$ is set to	U			
R _{PWM,up} =200KΩ	216.			
$C_{ADIM} = \frac{1.25 \times 10^{-5}}{f_{PWA}} F \cdot Hz$	$=\frac{1.25\times10^{-5}}{f_{PWM}}F\cdot Hz = 125n$	ıF		
Hence C_{ADIM} is set to $C_{ADIM} = 100 nF$				

(a)Compute turns ratio N_{PS} first

SILERGY $N_{PS} \leq \frac{V_{MOS_(BR)DS} \times 90\% \text{-} \sqrt{2} V_{AC_MAX} \text{-} \Delta V_{S}}{V_{OUT} \text{+} V_{D,F}}$ $= \frac{600V \times 0.9 - \sqrt{2} \times 264V - 50V}{2}$ 36V+1V =2.99

N_{PS} is set to

 $N_{PS}=2$

(b)f_{S,MIN} is preset

 $f_{S MIN} = 50 kHz$

(c) Compute the switching period t_s and ON time t_1 at the peak of input voltage.

=2.99
N_{PS} is set to
N_{PS} =2
(b)
$$f_{S,MIN}$$
 is preset
 $f_{S,MIN} = 50 \text{kHz}$
(c) Compute the switching period t_S and ON time t_1 at the peak of input voltage.
 $t_1 = \frac{t_S \times N_{PS} \times (V_{OUT} + V_{D,F})}{\sqrt{2} V_{AC,MIN} + N_{PS} \times (V_{OUT} + V_{D,F})}$
 $= \frac{20 \mu s}{\sqrt{2} 2 90 \nu + 2 \times (36 \nu + 1 \nu)}$
 $= 9 \mu s$
(d) Compute the inductance L_M
 $L_M = \frac{V_{AC,MIN}^2 \times t_1^2 \times \eta}{2P_{OUT} \times t_S}$
 $= 1.3 \text{mH}$
Set
 $L_M = 1.2 \text{mH}$

$$L_{M} = \frac{1}{2P_{OUT} \times t_{S}}$$
$$= \frac{90V^{2} \times 9\mu s^{2} \times 0.85}{2 \times 10.8W \times 20\mu s}$$

Set

 $L_{M} = 1.2 mH$ (e) Compute the quasi-resonant time t₃ $t_3 = \pi \times \sqrt{L_M} \times C_{Drain}$

 $=\pi \times \sqrt{1.2 \text{mH} \times 100 \text{pF}}$

=1.09us

(f) Compute primary maximum peak current I_{P-PK-MAX}

SY5802
SUBJON

$$V_{P,PK,MAX} = \frac{V_{0tT} \times \left[\frac{V_{MC,MM}}{V_{MC,MM}} + \frac{V_{MS} \times (V_{0tT} + V_{D,F})}{L_M \times \eta}\right]}{L_M \times \eta}$$

$$+ \sqrt{\frac{P_{0tT} \times \left[\frac{V_{MC,MM}}{V_{MC,MM}} + \frac{V_{MS} \times (V_{0tT} + V_{D,F})}{L_M \times \eta}\right]^2 + L_M \times \eta \times P_{0tT} \times t_3}}{L_M \times \eta}$$

$$= 0.624A$$
Adjust switching period t, and ON time t, to t's, and t'. :

$$t'_s = \frac{\eta \times L_M \times l_{P,PK,MAX}}{2P_{0tT}}$$

$$= \frac{0.85 \times 1.2 \text{ mH} \times 0.624 A^2}{2 \times 10.8 \text{ W}}$$

$$= 1.38 \text{ gs}$$

$$t' = \frac{L_M \times V_{P,PK,MAX}}{1.04 \text{ V}}$$
Compute primary maximum RMS current $l_{P,RMS,MAX}$

$$t'_s = \frac{L_M^2 \times V_{P,PK,MAX}}{\sqrt{3t_3^2}} \times 1.9 \text{ gs} \times 0.624 \text{ A} = 0.225 \text{ A}$$
(g) Compute secondary maximum peak current and the maximum RMS current.

$$l_{x,RMS,MAX} = \sqrt{\frac{L_3'}{3t_3'}} \times l_{P,PK,MAX} = \sqrt{\frac{7.19 \text{ gs}}{3 \times 18.38 \text{ gs}}} \times 0.624 \text{ A} = 0.225 \text{ A}$$
(g) Compute secondary maximum peak current and the maximum RMS current.

$$l_{x,RMS,MAX} = \sqrt{\frac{L_3'}{3t_3'}} \times l_{P,PK,MAX} = \sqrt{\frac{7.19 \text{ gs}}{3 \times 18.38 \text{ gs}}} \times 1.248 \text{ A} = 0.534 \text{ A}$$

#3. Select power MOSFET and secondary power diode

Refer to Power De	evice Design			
Known conditions	s at this step			
V _{AC-MAX}	264V	N _{PS}	2	
V _{OUT}	36V	V _{D-F}	1V	
ΔV_{S}	50V	η	85%	

(a) Compute the voltage and the current stress of MOSFET:

SILERGY $V_{\text{MOS}_{DS}_{MAX}} = \sqrt{2} V_{\text{AC}_{MAX}} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_{F}}) + \Delta V_{\text{S}}$ $=\sqrt{2} \times 264V + 2 \times (36V + 1V) + 50V$ =497V

 $I_{MOS PK MAX} = I_{P PK MAX} = 0.624 A$

$$V_{D_{P_{a}MAX}} = \frac{\sqrt{2}V_{AC_MAX}}{N_{PS}} + V_{OUT}$$
$$= \frac{\sqrt{2} \times 264V}{2} + 36V$$
$$= 223V$$

$$I_{D PK MAX} = I_{S PK MAX} = 1.248A$$

$I_{MOS_{PK}MAX} = I_{P_{PK}MAX} = 0.624A$
$I_{MOS_{RMS}_{MAX}} = I_{P_{RMS}_{MAX}} = 0.224A$
(b) Compute the voltage and the current stress of secondary power diode
$V_{D_{L}R_{MAX}} = \frac{\sqrt{2}V_{AC_{MAX}}}{N_{PS}} + V_{OUT}$ $= \frac{\sqrt{2} \times 264V}{2} + 36V$ $= 223V$ $I_{D_{L}PK_{MAX}} = I_{S_{L}PK_{MAX}} = 1.248A$ $I_{D_{L}AVG} = I_{OUT} = 0.3A$ #4. Select the output capacitor C _{OUT} Refer to Power Device Design
$I_{D_{PK}MAX} = I_{S_{PK}MAX} = 1.248A$
$I_{D_{AVG}} = I_{OUT} = 0.3A$
#4. Select the output capacitor C_{OUT}
Refer to Power Device Design
Conditions
ΔV_{OUT} 360mV
The output capacitor is $R_{\text{Cout,ESR}} = \frac{\Delta V_{OUT}}{I_{\text{S}_{PK}\text{MAX}}} = \frac{50mV}{1.284A} = 280m\Omega$

#5. Design RCD snubber

Refer to Power Device Design

Conditions				
VOUT	36V	ΔV_{S}	50V	
N _{PS}	2	L_K/L_M	1%	
POUT	10.8W			

The power loss of the snubber is

 $SIERGY = \frac{N_{PS} \times (V_{OUT} + V_{D_{L}F}) + \Delta V_{S}}{\Delta V_{S}} \times \frac{L_{K}}{L_{M}} \times P_{OUT}$ $=\frac{2\times(36V+1V)+50V}{50V}\times0.01\times10.8W$ =0.27W

$$C_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_{\text{F}}}) + \Delta V_{\text{S}}}{R_{\text{RCD}} f_{\text{S}} \Delta V_{\text{C}_{\text{RCD}}}}$$
$$= \frac{2 \times (36 \text{V} + 1 \text{V}) + 50 \text{V}}{60 \text{k} \Omega \times 100 \text{kHz} \times 25 \text{V}}$$
$$= 830 \text{pF}$$
#6. Set VIN pin

=0.27W			
The resistor of the snubbe	er is		
$R_{RCD} = \frac{(N_{PS} \times (V_{OUT} + V_{D_{P}} + V_{D_{P}})}{P_{RCD}}$	$(\Delta V_{\rm S})^2$		ALL
$=\frac{(2\times(36V+1V)+50)}{(2\times(36V+1V)+50)}$	$(0V)^2$		
0.27W			
=60kΩ			
The capacitor of the snub	ber is		
$C_{RCD} = \frac{N_{PS} \times (V_{OUT} + V_{D_F})}{R_{RCD} f_S \Delta V_{C_{RCD}}}$	$\frac{1}{\Delta V_s}$	prepare	60
$= \frac{2 \times (36 \text{V} + 1 \text{V}) + 50}{2 \times (36 \text{V} + 1 \text{V}) + 50}$			S
$=$ $\frac{1}{60 \text{k} \Omega \times 100 \text{kHz} \times 2}$			
=830pF		, oX	
#6. Set VIN pin			
Refer to Start up		i alt	
Conditions			
V _{BUS-MIN}	104V	V _{BUS-MAX}	264V×1.414
I _{ST}	15μA (typical)	V _{IN-ON}	16V (typical)
I _{VIN-OVP}	2mA (typical)	t _{ST}	500ms (designed by user)

(a) R_{ST} is preset

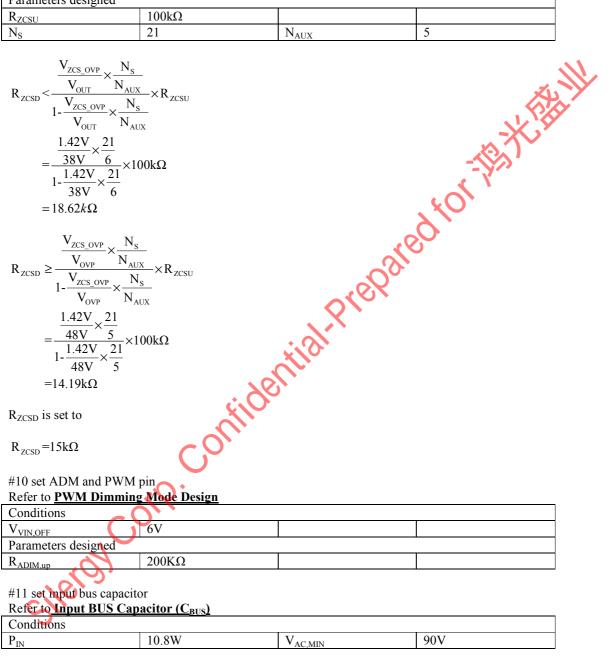
$$R_{ST} < \frac{V_{BUS}}{I_{ST}} = \frac{90V \times 1.414}{15\mu A} = 848M\Omega ,$$

$$R_{ST} > \frac{V_{BUS}}{I_{VIN_{OVP}}} = \frac{264V \times 1.414}{2mA} = 186k\Omega$$

Set R_{ST}

 $R_{st} = 250k\Omega \times 3 = 750k\Omega$

(b) Design C_{VIN}


SY5802
SIFEROF

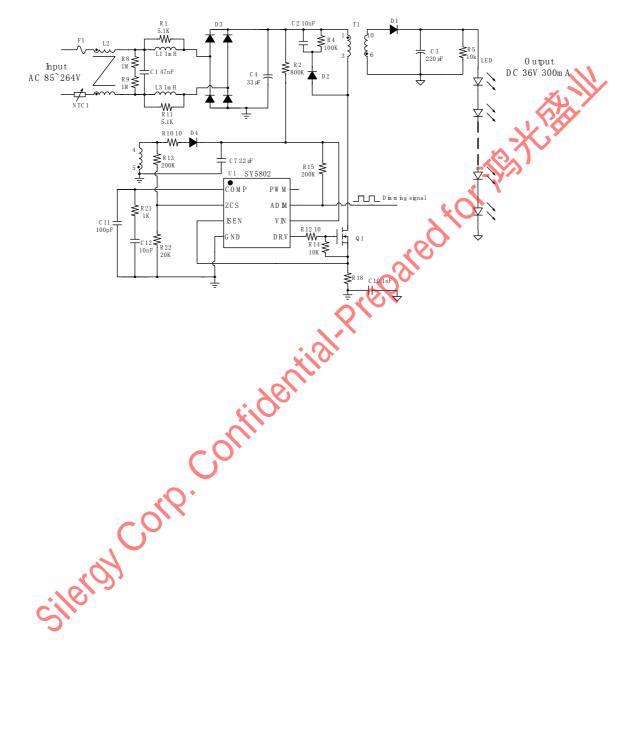
$$\zeta_{VBS} = \frac{\left(\sum_{k=1}^{WBS} + I_{kT}\right) \times I_{kT}}{V_{VBS,OS}}$$

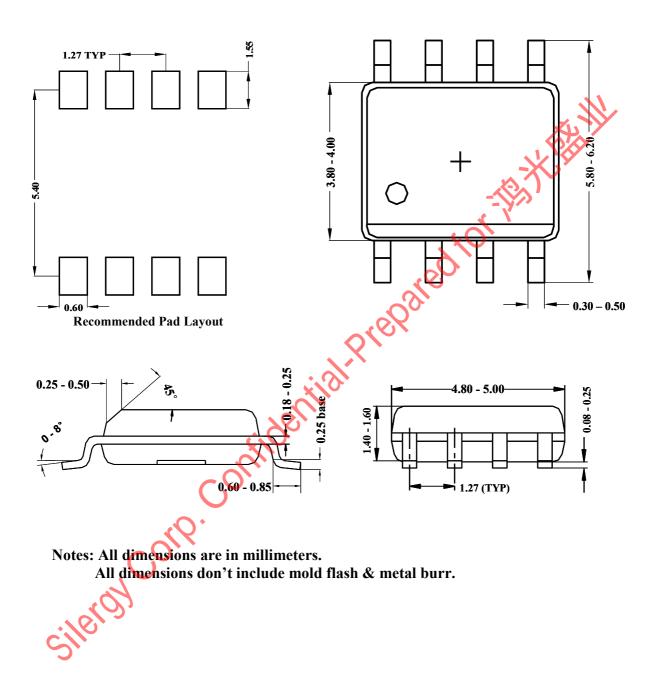
 $= \frac{\left(\sum_{j=1}^{WBS} + i_{j}\right) \times I_{kT}}{16V}$
 $= 3.86\mu$ F
St C_{VB}
St C_{VB}
St C_{VB}
Refer to Internal pre-charge design for quick start up
Parameters designed 460m
Ccomp 400m
Ccomp 400

Known conditions at this step					
k ₃	68				
Parameters Designed					
R _{ZCSU}	100kΩ				

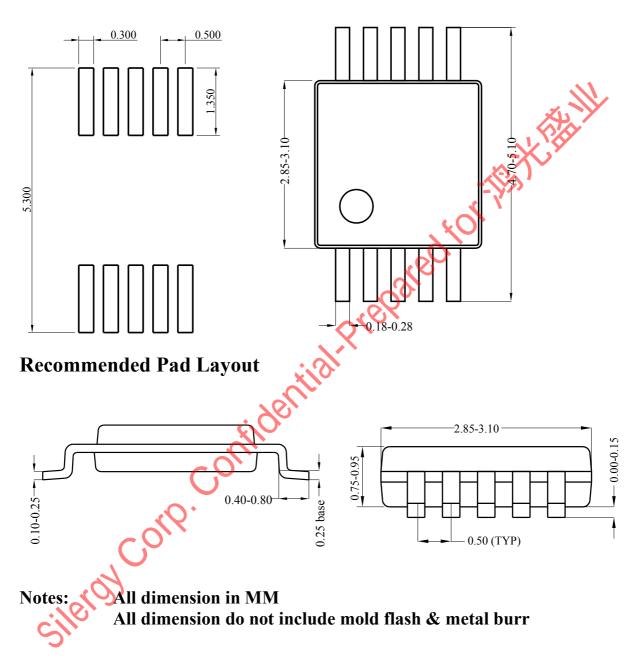
Then compute R _{ZCSD}		
Conditions		
1.42V	V _{OVP}	48V
38V		
Parameters designed		
100kΩ		
21	N _{AUX}	5
	38V	38V 100kΩ

 $C_{\scriptscriptstyle BUS} = P_{\scriptscriptstyle IN} \times 3\mu F \,/\, W = 10.8W \times 3\mu F \,/\, W = 32.4\mu F$


 $C_{BUS} \mbox{ is set to }$


 $C_{BUS} = 33 \mu F$

#11 final result



SO8 Package Outline & PCB Layout Design

