

# STM8 Core & Architecture STM8 Technical Training



# **Direct Memory Access (DMA)**

### **DMA Features**



- 4 independently configurable channels (channel 0..3)
- **4 Software programmable priority levels:** Very high, High, Medium or Low. Hardware priority in case of equality (channel0 has higher priority vs. channel1).
- Circular mode (auto-reload mode) is available to handle circular buffers and continuous data flows (e.g. ADC1 scan mode).
- Programmable transfer data size: Byte or Half word (16bit) with Programmable number of data to be transferred up to 255.
- Can operate in low power Waite mode
- 2 event flags for each channel with Interrupt capability
  - DMA Half Transfer,
  - DMA Transfer complete
- Programmable and Independent source and destination:
  - **Memory-to-memory** (only on channel 3),
  - peripheral-to-memory and
  - **memory-to-peripheral** transfers

### DMA Request Mapping (medium+ devices)



#### **STMicroelectronics**

### 43

### **DMA Source and destination addresses**

- 4 independently configurable channels are available:
  - 3 regular channels (channel 0, channel 1 and channel 2)
  - 1 memory channel (channel 3).

| Channels            | Transfer direction   | Source<br>address<br>range | Destination<br>address<br>range |  |  |
|---------------------|----------------------|----------------------------|---------------------------------|--|--|
| Regular<br>channels | Peripheral to memory | Zone 3                     | Zone 1                          |  |  |
|                     | Memory to peripheral | Zone 1                     | Zone 3                          |  |  |
| Memory<br>channel   | Peripheral to memory | Zone 4                     | Zone 5                          |  |  |
|                     | Memory to peripheral | Zone 5                     | Zone 4                          |  |  |
|                     | Memory to<br>Memory  | Zone 5                     | Zone 2                          |  |  |







### Flash and Data EEPROM

#### **STMicroelectronics**

### Memory mapping and main features L15x/L16x

- Up to 64kbyte Program memory (flash) based on EEPROM technology and up to 2k Data EEPROM memory
- Write protection with Memory Access Security System (MASS keys)
- Programmable write protected User Boot Code area (UBC)
- Automatic read-out protection of Proprietary code area (PCODE)
- Boot ROM embedding ST proprietary boot loader code
- One Interrupt vector dedicated to end of program/erase operation and on illegal program operation





# Memory mapping and main features



- In Circuit Programming (ICP) and In Application Programming (IAP) capabilities
- Memory state configurable to operating or power-down mode (IDDQ) in the device low power modes for STM8L15x / STM8L16x
- 128B per page medium density devices
- 256B per page medium+ / high density devices

### **Proprietary code protection**

- NEW
- Available on medium+ and high density devices
- Allowing to protect software libraries
- PCODE is accessible only by TRAP or TLI interrupts
- It is read protected for any other access
- Up to 255 pages
  - 256B each
- Interrupt vector table included in PCODE area



## **ROM bootloader**

**STMicroelectronics** 

55



- Bootloader required properties:
  - 1) Able to program Flash, EEPROM, RAM memory in final user application
    - IAP programming feature in STM8
  - 2) Communicate with host by built-in interfaces
    - UART1..3, SPI1, I2C1
    - Protected against self-rewrite (e.g. by accident)
    - location in ROM memory (address 0x6000)
  - 3) Easy and safe to activate it
    - activated after each device reset
    - activation timeout 1 second waiting for host command
    - can be disabled by option byte



# **Clock Control (CLK)**



### **On Chip Oscillators**



- Multiple clock sources for full flexibility in RUN/Low Power modes
  - HSE (High Speed External oscillator): 1MHz to 16MHz main osc
    - $\rightarrow$  Can be bypassed with external clock
  - HSI (High Speed Internal RC): factory trimmed internal RC oscillator 16MHz calibrated in factory +/-2% max at ambient temperature
    - Feeds System clock after reset or exit from HALT/Active HALT mode for fast startup
    - Backup clock HSI/8 in case HSE failure
  - LSI (Low Speed Internal RC): 38 kHz internal RC for IWDG and optionally for the RTC/LCD and BEEP used for Auto Wake-Up (AWU) from Active HALT mode
  - LSE (Low Speed External oscillator): 32.768 kHz osc provides a precise time base with very low power consumption (max 06µA). Optionally drives the RTC/LCD for Auto Wake-Up (AWU) from Active HALT mode.
    - → Can be bypassed with external clock
  - → Each clock source is <u>enabled</u> by Hardware when its selected to be used as source for: System clock, RTC clock, CCO output, IWDG (LSI) or BEEP (LSI/LSE) and can't be <u>disabled</u> while its being used.

### **Clock Scheme & Features L15x**

CSS



#### System clock sources - Configurable dividers to provide CPU and peripherals clocks

HSIHSE

LSI

LSE

HSI/8 default after reset\*

- Peripheral clock gating (PCG)\*\*
  - Enable or disable the clock for each
    - peripherals to reduce power consumption
- RTC/LCD Clock sources
  - HSI
  - HSE with CSS
  - LSI
  - LSE with CSS

- Fast and efficient System clock switching
  Clock sources can be changed safely on the fly in run mode through a configuration register
- Configurable clock output on CCO Pin (PC4)
- Clock Security System (CSS) to backup clock in case of HSE clock failure (HSI feeds the system clock)



ST (\*\*) PCLK, clock gating for peripherals

### **RTC and LCD clock L15x**



- The RTC has two clock sources
  - **RTCCLK** used for RTC timer/counter.
    - When the HSE or HSI clock is selected as RTCCLK source, this clock must be divided to have a maximum of 1 MHz as input for the RTCCLK.
  - SYSCLK used for RTC register read/write access. This clock is gated by bit2 in the Peripheral clock gating register 2 (CLK\_PCKENR2)
  - HSE and LSE source for RTC is covered by CSS (on medium+ devices)
- The LCD has two clock sources
  - RTCCLK divided by 2 used to generate the LCD frame rate. This clock is gated by bit3 in the Peripheral clock gating register 2 (CLK\_PCKENR2).
    - Consequently, even if the RTC is not used in the application the RTCCLK must be configured to drive the LCD.
  - LCDCLK used for LCD register read/write access. This clock is derived from SYSCLK by setting the bit3 in the Peripheral clock gating register 2 (CLK\_PCKENR2).
    - In Active Halt mode the LCDCLK source is RTCCLK instead of SYSCLK.



### **Power and Reset**



### **Low Power consumption values**





- > LP Wait mode: LSI/LSE ON, peripherals can be activated
- > ACTIVE HALT mode: All clocks OFF, RTC ON
- HALT mode: All clocks OFF, RTC OFF

STMic Also possible RTC on LSI: RTC feed by low speed internal RC, periodic wake up but no accurate calendar function



| Low Power<br>Modes           | Entry                   | Functions |                   |                      |                 |            |       | Low power modes names and<br>consumptions |                                        |                                        |
|------------------------------|-------------------------|-----------|-------------------|----------------------|-----------------|------------|-------|-------------------------------------------|----------------------------------------|----------------------------------------|
|                              |                         | CPU       | Periphs           | High<br>Speed<br>Osc | RTC<br>Calendar | LSI<br>LSE | FLASH | RAM                                       | STM8L<br>Typical values<br>@ 3V / 25°C | STM8L<br>Typical values<br>@ 3V / 85°C |
| LP RUN                       | SW<br>Sequence          | ON        | Can be<br>enabled | OFF                  | ON              | ON         | OFF   | ON                                        | 5.4µA                                  |                                        |
| LP WAIT                      | SW<br>Sequence<br>+ WFE | OFF       | Can be<br>enabled | OFF                  | ON              | ON         | OFF   | ON                                        | 3.3µA                                  |                                        |
| ACTIVE Halt<br>w/ full RTC   |                         |           | OFF               |                      | ON              | ON         | OFF   | ON                                        | 1.0µA*                                 | 1.4µA                                  |
| ACTIVE Halt<br>w/ RTC on LSI | HALT                    | OFF       |                   |                      | ON              | OFF        | ON    | 0.8µA*                                    | 1.2µA                                  |                                        |
| Halt                         |                         |           |                   |                      | OFF             | OFF        | OFF   | ON                                        | 0.4µA*                                 | 1μΑ                                    |

\* Internal reference voltage + BOR OFF