基于LabVIEW的数据采集高级编程

- National Instruments公司简介
- 数据采集软硬件平台
- 基于LabVIEW的数据采集编程
- 总结

- National Instruments公司简介
- 数据采集软硬件平台
- 基于LabVIEW的数据采集编程
- 总结

National Instruments: 虚拟仪器技术倡导者

- ·建立于1976年
- 超过1,000种测试测量产品
- · 在40多个国家设有直属分 支机构,600家系统联盟商

- ·连续9年被《财富》杂志 评为美国最适合工作的 100家公司之一
- •中国:区域咨询,市场,技术 支持,研发

NI的客户分布

- •超过25,000个客户分布在多达80个国家
- •财富500强中95%的制造型企业

NI公司在全球数据采集产品市场中的地位

Figure 2.7 presents the company market share by revenues in the data acquisition boards, modules & software (not including interfacebased data acquisition) market. All other vendors have less than 4.8% market share.

Source: Figure 2-7: Data Acquisition Systems Market: Company Market Share by Revenues (World), 2005, Frost & Sullivan World Data Acquisition Boards Modules Software and Interface-Based Markets 2006

- National Instruments公司简介
- 数据采集软硬件平台
- 基于LabVIEW的数据采集编程
- 总结

基于计算机的数据采集系统(DAQ)

测量和自动化系统的软件架构

数据采集设备组成

- 数据采集设备一般具有:
 - 模拟输入Analog Input
 - 模拟输出Analog Output
 - 数字量输入/输出DIO
 - 计数器Counter/Timer

- 特殊应用的特别设备
 - 高速数字量输入/输出HSDIO
 - 高速波形生成与采集
 - 动态信号采集DSA (振动信号、声音信号)
 - 数字万用表DMM

计算机

数据采集设备

NI 提供的数据采集平台

保证工程师选择最合适自己的一款产品!

测量和自动化系统的软件架构

中国地区数据采集和仪器控制领域最常用的软件

Reed机构2005年调研结果

Error: 4.5%

LabVIEW图形化开发环境简介

前面板

数据采集的最佳开发平台

采集

分析

显示

- National Instruments公司简介
- 数据采集软硬件平台
- 基于LabVIEW的数据采集编程
- 总结

系统服务与配置

不仅仅是驱动软件: NI-DAQmx

- 通过Measurement and Automation
 Explorer (MAX)配置和验证建立
 数据采集任务
- 使用数据采集助手DAQ Assistant 快速建立应用
- ・ 最新的 API
 - 多态的函数
 - 自动代码生成
- 改进的驱动架构
 - 多线程测量
 - 即刻的校准
 - 单点操作快20倍
 - 代码生成

配置诊断工具 (MAX) Measurement and Automation Explorer

- 系统管理工具
- 配置硬件
- 自校准
- 创建虚拟通道
- 硬件设备仿真
- 在驱动软件层将数据
 自动换算成工程单位

DAQ API 与 DAQ助手

快速开发工具: DAQ助手(DAQ Assistant)

- 更快的开发速度
- 使用LabVIEW直 接进行通道/任 务的配置
- 自动代码生成
- 减少编程错误
- 测试面板
- 在外部直接设置 采样率、采样点 数等

Demo

使用DAQmx进行数据采集一通道和任务

使用DAQmx进行数据采集一主要VI

- •建立虚拟通道
- •读取
- •写出
- •定时设定
- 触发设定
- •高级任务函数

使用DAQmx进行数据采集一开始和停止任务VI

•开始任务 – 开始测量或生成

- 从配置状态到运行状态

•停止任务-停止测量或生成

- 从运行状态转到

注意:不使用开始和停止任务VI会降低系统性能。

使用DAQmx进行数据采集一属性节点

📴 DAQmx - Data Acquis 📃 🗖 🔀			
🕆 🔍 Search 👫			
TASK CHANK DRRms DRRms			

- •设定读写或其他对象的属性
- •特定对象的属性节点
 - -通道
 - -定时
 - 触发
 - 读取
 - -写出

读取VI&读取属性节点

- •可选属性
 - -偏置

— . . .

- 读取通道
- -波形属性
- 当前可用采样数

写出VI&写出属性节点

建立虚拟通道 VI & 通道属性节点

- 建立虚拟通道 VI
 - 用编程方式建立一个或 多个虚拟通道
 - 将已经建立的通道加入 到任务中

- •可选属性
 - -通道类型
 - -物理通道名
 - 描述

. . .

- -模拟I/O比例系数设定
- 数字I/O线数
- 计数器I/O脉冲循环设定

task in more back out ActiveChan PhysicalChanName AI.StrainGage.PoissonRatio AI.Strain.Units CI.Freq.StartingEdge

触发设定 VI & 触发属性节点

- 触发设定 VI
 - 设定任务在特定模拟或数 字触发时,开始或结束数 据采集

•可选属性

. . .

- 起始触发类型
- 起始触发数字边沿
- -起始触发模拟窗口
- -参考触发设定

task in	مر 🕶 DAQmx Trigger	mm task out
ŀ	Start.TrigType	
ŀ	Start.DigEdge.Src	
ŀ	Ref.PreTrigSamples	
ŀ	Ref.AnlgEdge.Hyst	
ŀ	Pause.TrigType	

构建数据采集应用——模拟输入

无通道间延迟

- 采样频率过低会发生混叠
- 一旦信号产生混叠现象, 就无法重构原始信号
- 准确的频率表示:
 - 采样频率至少是输入信号最大频率的2倍
- 准确重构波形:

- 采样频率是输入信号的5-10倍

模拟输入信号 - 分辨率

- 3-bit 分辨率能表示8个电压等级
- 16-bit 分辨率能表示65,536电压等级
- 更高的分辨率——检测到更小的电压变化

终端模式: 差分模式(Differential)

- 差分模式
 - 每个信号使用两个通道
 - ACH 0 与 ACH 8, ACH 1 与 ACH 9, 等等.
 - 抑制共模电压和共模噪声

- 参考单端模式
 - 以系统地为参考进行测量
 - 每个信号使用一个通道
 - 不能抑制共模电压

终端模式: 非参考单端模式(NRSE)

- 非参考单端模式
 - 每个信号一个通道
 - 以AISENSE为参考端进行测量
 - AISENSE 是浮动端
 - 不能抑制共模电压

ACH8	34	68	ACH0
ACH1	33	67	AIGND
AIGND	32	66	ACH9
ACH10	31	65	ACH2
ACH3	30	64	AIGND
AIGND	29	63	ACH11
ACH4	28	62	AISENSE
ACH4 AIGND	28 27	62 61	AISENSE ACH12
ACH4 AIGND ACH13	28 27 26	62 61 60	AISENSE ACH12 ACH5
ACH4 AIGND ACH13 ACH6	28 27 26 25	62 61 60 59	AISENSE ACH12 ACH5 AIGND
ACH4 AIGND ACH13 ACH6 AIGND	28 27 26 25 24	62 61 60 59 58	AISENSE ACH12 ACH5 AIGND ACH14
ACH4 AIGND ACH13 ACH6 AIGND ACH15	28 27 26 25 24 23	62 61 60 59 58 57	AISENSE ACH12 ACH5 AIGND ACH14 ACH7

- 单点模拟输入:无缓冲的,软件定时的采集
- 带缓冲的模拟输入:数据先从DAQ设备传到缓冲中,然后由DAQmx Read.VI读取到应用程序内存中。
 - 有限多点采集
 - 连续采集

单点采集输入是无缓冲的,软件定时的采集

带缓冲的模拟输入一设定缓冲大小

samples per channel 132 sample mode 132 DAQmx task/channels in 170 rate Sample Clock

- 如果使用缺省值或设为-1,则 NI-DAQmx根据任务的配置, 自动确定读取的采样点数
- 每通道的采样点数(Samples per channel)等于缓冲大小

带缓冲的有限点采集

- 带缓冲的硬件定时的有限点采集
- 推荐在多数应用中使用
- 需要设定缓冲大小、采样模式、采样率、每通道采 样点数

带缓冲的连续采集的程序流程

带缓冲的连续采集程序

构建数据采集应用——模拟输出

输出波形的频率

- 输出波形的频率由下面参数确定:
 - 更新率
 - 缓冲中的循环个数

写VI的Auto Start参数

- 控制是否由Write写 VI启动信号输出
 - 对于单点采样,缺省值为真
 - 对于多点采样,缺省值为假
- 当使用 Start/Stop Task VI时,总是设定 auto start 为 FALSE

带缓冲的有限点输出的程序流程

Demo

带缓冲的连续输出的程序流程

使用采样时钟定时的连续数据输出

使用dt参数定时的连续波形输出

- 在DAQmx定时VI中,使用波形数据的dt参数设定定时
- 缺省为使用PC缓冲保存输出数据

构建数据采集应用——数字I/O

NI-DAQmx 数字终端类型

- 端口(Port): 数字线的集合,一般为4/8个 端口命名:
 - Dev x / Port y
- 数字线(Line): 端口中的一条信号线 数字线命名:
 - Dev x / Port y / Line a
 - Dev x / Port y / Line a : b
 - Dev x / Port y / Line a, Dev x / Port y / Line b

数字通道的数据类型

lines

数字线类型的数字通道

- 数字线类型(布尔量)
 - 每通道一个数字线
 - 表达为单个布尔量
 - 每通道多个数字线
 - 表达为布尔量的一维数组

 $\left\{ \cdot \right\}$

Boolean Array

- 数字线类型只能用于单采样的读写操作

🗸 Analog	►	<u> </u>				
Digital	•	Single Channel		Single Sample		Boolean (1 Line)
Counter		Multiple Channels	►	Multiple Samples	•	1D Boolean (N Lines)
More						U8 (port format)
						U32 (port format)
						Waveform

读取单数字线通道采样数据

• 使用Read.vi与数字线类型,返回一个布尔量

从多数字线通道读取采样数据

•从多数字线通道的返回值为布尔量数组

端口类型的数字通道

- 端口类型(整数)
 - 端口类型表达为U8或U32的整数, 端口中的每个数字线表示一个比特位

- 端口类型能用于单采样或多采样的读写操作

从端口类型通道读取采样数据

•端口数据类型时返回值为U8或U32整数

波形类型的数字通道

- 数字模式波形
 - 硬件时钟定时
 - 模式信号输入/输出
- 在数字电路等测试中有重要作用

Demo

构建数据采集应用——计数器

计数器

- •计数器是一个数字计数设备
- •计数器的典型应用:
 - -边沿计数
 - -脉冲生成
 - 周期测量
 - -脉冲宽度测量
 - --频率测量

- Count register—存储当前计数值
- •Source—被计数的输入源信号
- •Gate—确定计数是否启动的门控信号
- •Output—产生脉冲或脉冲序列的输出信号

简单边沿计数(1)

- 在输入信号边 沿改变计数器 的值
 - 可以设定为对 信号的上升或 下降沿计数
- •对已知频率的时 基信号计数,则 可以实现计时:

时间 = 计数值 × 时基信号周期

简单边沿计数(2)

- 计数值在源信号的上升沿增加
- 可以设定成下降沿
- 计数器最大值 = 2^(计数器位数)-1
- 当源信号为时基信号时,可用于时间测量

• 在DAQmx Read VI中选择Counter

门控边沿计数(1)

- 非缓冲
- 门控信号可以控制计数寄存器是否对源信号计数
- 只有当门控信号有效时,计数器才会对源信号的 边沿进行计数

门控边沿计数(2)

- 在门信号为高或低电平(可软件设置)时,计数器对 源信号计数
- 门信号无效时,计数停止

重要参数 **High Polarity** Low Polarity Pulse Polarity Delay Delay Width Width Pulse Period Delay + Width = 1 **Pulse Frequency Pulse Period** Width **Duty Cycle Pulse Period**

脉冲信号生成(2)

• 在计数器输出端输出一个TTL信号

- National Instruments公司简介
- 数据采集软硬件平台
- 基于LabVIEW的数据采集编程
- 总结

附录:数据采集高级技巧

技巧1:

了解你的定时引擎

1. 外部定时

2. 同步

3. 引入延时


```
M系列定时引擎
```


M系列定时引擎

使用板上时钟

多设备同步

外部采样时钟

外部采样时钟的时基

定时引擎-运用你所学到的

• 实际应用

- <u>怎样使用PLL共享外部时基,通过定时引擎分</u> <u>频后作为采样时钟?</u>

Demo

使用PLL共享外部时基

技巧 2:

理解触发电路

- 1. 提供确定性控制
- 2. 只采样感兴趣的数据
- 3. 编程更具创新性

Start Trigger

Start Trigger 开始一个采集或波形发生

Pause Trigger

Pause Trigger 暂停一个采集过程

Reference Trigger

Reference Trigger 在一组采样点上建立参考点

Start Trigger & Reference Trigger

Pause Trigger

模拟触发类型

模拟触发电路

For information on Analog Triggers see NI-DAQmx Help >> Key NI-DAQmx Concepts >> Triggering

触发-运用你所学到的

• 实际应用

- <u>怎样在收到一个触发后停止采集过程?</u>

Demo

使用Reference Trigger停止采集

技巧 3:

了解你的计数器

- 1. 子系统间复杂的定时
- 2. 子系统间的同步
- 3. 为其他子系统的数字触发
- 4. 内建在NI-DAQmx驱动中的使用两个计数 器的复杂测量和发生操作

配对的计数器

每个计数器的输出都可以由内部路由到另一个计数器的输入

计数器信号路由

可从多种途径接受信号 输出直接连到其他子系统 M系列设备的计数器有附加的路由性能

M系列计数器连接

Image taken from NI-DAQmx Help >> Key NI-DAQmx Concepts >> Counters >> Counter Parts

在 NI-DAQmx中两个计数器的应用

•有限脉冲序列发生

-可重新触发

-可控长度,频率和占空比

•两个计数器的周期、频率测量

-高频方法:减小高频信号测量的量化误差 -大量程方法:适合频率变化范围很大的信号

在 NI-DAQmx 中的有限脉冲序列发生

两个计数器的周期频率测量 (高频测量方法)

两个计数器的周期频率测量 (大量程测量方法)

Frequency = (1 ctr frequency) * divisor

- 计数器-运用你所学到的
- 实际应用

- <u>怎样创建可重新触发的AI采集,并且触发信号与</u> 开始采集间的延时可配置?

Demo

创建可重新触发的采集

更深入的内容

- 高级DAQmx VI的使用
- 缓冲的高级设定与应用
- 计数器的其他应用:频率测量、脉冲测量等
- 触发信号的高级应用
- 多通道或多板卡间数据采集的同步

范例查找器一助您快速开发高级应用

总结

- NI数据采集——全球领先地位
- 基于LabVIEW快速开发DAQ应用
 - 系统配置与控制
 - DAQ API与DAQ助手
 - 模拟输入/输出
 - 数字I/O
 - 计数器
- DAQ使用高级技巧

请访问NI中文主页了解更多信息

www.ni.com/daq

拨打免费咨询电话

800-820-3622

